Although encouraging results of adipose-derived stem cell (ADSC) use in wound healing are available, the mechanism of action has been studied mainly in vitro and in animals. This work aimed to examine the safety and efficacy of allogenic ADSCs in human diabetic foot ulcer treatment, in combination with the analyses of the wound. Equal groups of 23 participants each received fibrin gel with ADSCs or fibrin gel alone. The clinical effects were assessed at four time points: days 7, 14, 21 and 49. Material collected during debridement from a subset of each group was analyzed for the presence of ADSC donor DNA and proteomic changes. The reduction in wound size was greater at all subsequent visits, significantly on day 21 and 49, and the time to 50% reduction in the wound size was significantly shorter in patients who received ADSCs. Complete healing was achieved at the end of the study in seven patients treated with ADSCs vs. one treated without ADSCs. One week after ADSC application, 34 proteins significantly differentiated the material from both groups, seven of which, i.e., GAPDH, CAT, ACTN1, KRT1, KRT9, SCL4A1, and TPI, positively correlated with the healing rate. We detected ADSC donor DNA up to 21 days after administration. We confirmed ADSC-related improvement in wound healing that correlated with the molecular background, which provides insights into the role of ADSCs in wound healing—a step toward the development of cell-based therapies.
Facial nerve palsy is a serious neurological condition that strongly affects patient everyday life. Standard treatments provide insufficient improvement and are burdened with the risk of severe complications, e.g., facial synkinesis. Mesenchymal stromal cell-based therapies are a novel and extensively developed field which offers new treatment approaches with promising results in regards to the nervous tissue regeneration. The potential of mesenchymal stromal cells (MSCs) to aid the regeneration of damaged nerves has been demonstrated in several preclinical models, as well as in several clinical trials. However, therapies based on cell transplantation are difficult to standardize in the manner similar to that of routine clinical practices. On the other hand, treatments based on mesenchymal stromal cell secretome harness the proregenerative features of mesenchymal stromal cells but relay on a product with measurable parameters that can be put through standardization procedures and deliver a fully controllable end-product. Utilization of mesenchymal stromal cell secretome allows the controlled dosage and standardization of the components to maximize the therapeutic potential and ensure safety of the end-product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.