Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN - a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the precise timing of spikes. The idea of the proposed algorithm is to transform spike trains during the learning phase into analog signals so that common mathematical operations can be performed on them. Using this conversion, it is possible to apply the well-known Widrow-Hoff rule directly to the transformed spike trains in order to adjust the synaptic weights and to achieve a desired input/output spike behavior of the neuron. In the presented experimental analysis, the proposed learning algorithm is evaluated regarding its learning capabilities, its memory capacity, its robustness to noisy stimuli and its classification performance. Differences and similarities of SPAN regarding two related algorithms, ReSuMe and Chronotron, are discussed.
This paper provides a comprehensive literature survey on the evolving Spiking Neural Network (eSNN) architecture since its introduction in 2006 as a further extension of the ECoS paradigm introduced by Kasabov in 1998. We summarize the functioning of the method, discuss several of its extensions and present a number of applications in which the eSNN method was employed. We focus especially on some proposed extensions that allow the processing of spatio-temporal data and for feature and parameter optimisation of eSNN models to achieve better accuracy on classification/prediction problems and to facilitate new knowledge discovery. Finally, some open problems are discussed and future directions highlighted.
Abstract. We propose a novel supervised learning rule allowing the training of a precise input-output behavior to a spiking neuron. A single neuron can be trained to associate (map) different output spike trains to different multiple input spike trains. Spike trains are transformed into continuous functions through appropriate kernels and then Delta rule is applied. The main advantage of the method is its algorithmic simplicity promoting its straightforward application to building spiking neural networks (SNN) for engineering problems. We experimentally demonstrate on a synthetic benchmark problem the suitability of the method for spatio-temporal classification. The obtained results show promising efficiency and precision of the proposed method.
In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input-output spike trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron to associate input spatiotemporal spike patterns to desired output spike patterns. The algorithm is based on the conversion of spike trains into analogue signals and the application of the Widrow-Hoff learning rule. In this article we present a mathematical formulation of the proposed learning rule. Furthermore, we extend the application of the algorithm to train a SNN consisting of multiple spiking neurons to perform spatiotemporal pattern classification and we show that the accuracy of classification is improved significantly over a single spiking neuron. We also investigate a number of possibilities to map the temporal output of the trained spiking neuron into a class label. Potential applications for motor control in neuro-rehabilitation and neuro-prosthetics are discussed as a future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.