We report on the detection of an angiogenic molecule Vascular Endothelial Growth Factor (VEGF) in different biological matrices by means of a new integrated biosensing platform exploiting the properties of Bloch surface waves. The new platform takes advantage of a tandem configuration, in which both label-free and enhanced fluorescence detection are implemented. Specifically designed one dimensional photonic crystals were deposited directly on disposable and low cost plastic biochips. A direct sandwich immunoassay was used to detect VEGF in buffer, cell culture supernatant and human plasma at low concentration (ng/mL). The platform enabled the detection of VEGF in all three matrices with high resolution, fast turnaround time (30 min) and in close agreement with the results of enzyme linked immunosorbent assays
The development of a surface plasmon resonance (SPR) spectrometer comprising angular-resolved analysis for quasi-monochromatic illumination is reported. The optical system utilizes disposable, injection-molded chips combined with a lateral imaging optical system for parallel analysis of one-dimensional spot arrays. Further parallelization is achieved by introducing a segmented light source. This source sequentially illuminates three neighbored one-dimensional arrays in order to keep angular-resolved analysis without introducing any mechanically moving parts. This system is applied to detect genetic variations among different DNA samples obtained from polymerase chain reaction (PCR). For this purpose, 135 spots on the chip surface have been prepared by spotting and analyzed separately
We describe the design and fabrication of biochips based on 1-D photonic crystals supporting Bloch surface waves for label-free optical biosensing. The optical properties of Bloch surface waves are studied in relation to the geometry of the photonic crystals and on the properties of the dielectric materials used for the fabrication. The planar stacks of the biochips are composed of silica, tantala, and titania that were deposited using plasma-ion-assisted evaporation under high-vacuum conditions. The biochip surfaces were functionalized by silanization, and appropriate fluidic cells were designed to operate in an automated platform. An angularly resolved ellipsometric optical sensing apparatus was assembled to carry out the sensing studies. The angular operation is obtained by a focused laser beam at a fixed wavelength and detection of the angular reflectance spectrum by means of an array detector. The results of the experimental characterization of the physical properties of the fabricated biochips show that their characteristics, in terms of sensitivity and figure of merit, match those expected from the numerical simulations. Practical application of the sensor was demonstrated by detecting a specific glycoprotein, Angio-poietin 2, that is involved in angiogenesis and inflammation processes. The protocol used for the label-free detection of Angiopoietin 2 is described, and the results of an exemplary assay, carried out at a relatively high concentration of 1 μg/ml, are given and confirm that an efficient detection can be achieved. The limit of detection of the biochips for Angiopoietin 2, based on the protocol used, is 1.5 pg/mm2 in buffer solution. The efficiency of the label-free assay is confirmed by independent measurements carried out by means of confocal fluorescence microscopy
In contrast to mammals, early B cell differentiation and diversification of the antibody repertoire in chickens do not take place in the bone marrow but in a specialized gut associated lymphoid tissue (GALT), the bursa of Fabricius. During embryonic development, B cell precursors migrate to the bursa anlage, where they proliferate and diversify their B cell receptor repertoire. Around hatch these diversified B cells start to emigrate from the bursa of Fabricius and populate peripheral lymphoid organs, but very little is known how the migratory processes are regulated. As CXCL12 (syn. SDF-1) and CXCR4 were shown to be essential for the control of B cell migration during the development of lymphoid tissues in mammals, we analyzed expression and function of this chemokine/chemokine-receptor pair in the chicken bursa. We found a strong variation of mRNA abundance of CXCL12 and CXCR4 in different stages of bursa development, with high abundance of CXCL12 mRNA in the bursa anlage at embryonic day 10 (ED10). In situ hybridization demonstrated disseminated CXCL12 expression in the early bursa anlage, which condensed in the developing follicles and was mainly restricted to the follicle cortex post-hatch. Flow cytometric analysis detected CXCR4 protein already on early B cell stages, increasing during bursal development. Post-hatch, a subpopulation with the hallmarks of emigrating B cells became detectable, which had lower CXCR4 expression, suggesting that downregulation of CXCR4 is necessary to leave the CXCL12-high bursal environment. In vivo blockade of CXCR4 using AMD3100 at the time of B cell precursor immigration strongly inhibited follicle development, demonstrating that CXCL12 attracts pre-bursal B cells into the bursal anlage. Altogether, we show that CXCL12 and its receptor CXCR4 are important for both populating the bursa with B cells and emigration of mature B cells into the periphery post hatch, and that CXCR4 function in primary B cell organs is conserved between mammals and birds.
The detection of specific DNA sequences for the analysis of mutations as well as the detection of proteins gains increasing importance in the field of point-of-care diagnostics. Here, a novel low-cost lab-on-a-chip system for label-free detection of DNA hybridization and protein-protein interaction is introduced. The platform consists of a reader with disposable SPR chips produced by injection moulding. Micro optical elements are integrated into the chip to accomplish a simple connection to the optical reader. Automated, software-controlled reagent handling is achieved by a temperature-controlled microfluidic system comprising a syringe pump and a switching valve. The sensing area can be separated into maximum 40 parts for parallel analysis. Patterned functionalization is achieved by inverse micro contact printing. Several application examples, ranging from on-chip DNA hybridization up to the detection of antibodies inside diluted human blood serum, will be demonstrated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.