Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools.
Motivation: Recent breakthroughs in protein residue–residue contact prediction have made reliable de novo prediction of protein structures possible. The key was to apply statistical methods that can distinguish direct couplings between pairs of columns in a multiple sequence alignment from merely correlated pairs, i.e. to separate direct from indirect effects. Two classes of such methods exist, either relying on regularized inversion of the covariance matrix or on pseudo-likelihood maximization (PLM). Although PLM-based methods offer clearly higher precision, available tools are not sufficiently optimized and are written in interpreted languages that introduce additional overheads. This impedes the runtime and large-scale contact prediction for larger protein families, multi-domain proteins and protein–protein interactions.Results: Here we introduce CCMpred, our performance-optimized PLM implementation in C and CUDA C. Using graphics cards in the price range of current six-core processors, CCMpred can predict contacts for typical alignments 35–113 times faster and with the same precision as the most accurate published methods. For users without a CUDA-capable graphics card, CCMpred can also run in a CPU mode that is still 4–14 times faster. Thanks to our speed-ups (http://dictionary.cambridge.org/dictionary/british/speed-up) contacts for typical protein families can be predicted in 15–60 s on a consumer-grade GPU and 1–6 min on a six-core CPU.Availability and implementation: CCMpred is free and open-source software under the GNU Affero General Public License v3 (or later) available at https://bitbucket.org/soedinglab/ccmpredContact: johannes.soeding@mpibpc.mpg.deSupplementary information: Supplementary data are available at Bioinformatics online.
The integration of most membrane proteins into the cytoplasmic membrane of bacteria occurs co-translationally. The universally conserved YidC protein mediates this process either individually as a membrane protein insertase, or in concert with the SecY complex. Here, we present a structural model of YidC based on evolutionary co-variation analysis, lipid-versus-protein-exposure and molecular dynamics simulations. The model suggests a distinctive arrangement of the conserved five transmembrane domains and a helical hairpin between transmembrane segment 2 (TM2) and TM3 on the cytoplasmic membrane surface. The model was used for docking into a cryo-electron microscopy reconstruction of a translating YidC-ribosome complex carrying the YidC substrate FOc. This structure reveals how a single copy of YidC interacts with the ribosome at the ribosomal tunnel exit and identifies a site for membrane protein insertion at the YidC protein-lipid interface. Together, these data suggest a mechanism for the co-translational mode of YidC-mediated membrane protein insertion.DOI: http://dx.doi.org/10.7554/eLife.03035.001
BackgroundAny method that de novo predicts protein function should do better than random. More challenging, it also ought to outperform simple homology-based inference.MethodsHere, we describe a few methods that predict protein function exclusively through homology. Together, they set the bar or lower limit for future improvements.Results and conclusionsDuring the development of these methods, we faced two surprises. Firstly, our most successful implementation for the baseline ranked very high at CAFA1. In fact, our best combination of homology-based methods fared only slightly worse than the top-of-the-line prediction method from the Jones group. Secondly, although the concept of homology-based inference is simple, this work revealed that the precise details of the implementation are crucial: not only did the methods span from top to bottom performers at CAFA, but also the reasons for these differences were unexpected. In this work, we also propose a new rigorous measure to compare predicted and experimental annotations. It puts more emphasis on the details of protein function than the other measures employed by CAFA and may best reflect the expectations of users. Clearly, the definition of proper goals remains one major objective for CAFA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.