Research on multi-digit number processing suggests that, in Arabic numerals, their place-value magnitude is automatically activated, whenever a magnitude-relevant task was employed: However, so far, it is unknown, whether place-value is also activated when the target task is magnitude-irrelevant. The current study examines this question by using the parity congruency effect in two-digit numbers: It describes that responding to decade-digit parity congruent numbers (e.g., 35, 46; same parity of decades and units) is faster than to decade-digit parity incongruent numbers (e.g., 25; 36; different parities of decades and units). Here we investigate the (a-)symmetry of the parity congruency effect; i.e. whether it makes a difference whether participants are assessing the parity of the unit digit or the decade digit. We elaborate, how and why such an asymmetry is related to place-value processing, because the parity of the unit digit only interferes with the parity of the decade digit, while the parity of the decade digit interferes with both the parity of the unit digit and the integrated parity of the whole two-digit number. We observed a significantly larger parity congruency effect in the decade parity decision than in the unit parity decision. This suggests that automatic place-value processing also takes place in a typical parity judgment task, in which magnitude is irrelevant. Finally, because of the crosslingual design of the study, we can show that these results and their implications were languageindependent.
Arithmetic fact retrieval has been suggested to recruit a left-lateralized network comprising perisylvian language areas, parietal areas such as the angular gyrus (AG), and subcortical structures such as the hippocampus. However, the underlying white matter connectivity of these areas has not been evaluated systematically so far.Using simple multiplication problems, we evaluated how disconnections in parietal brain areas affected arithmetic fact retrieval following stroke. We derived disconnectivity measures by jointly considering data from n=73 patients with acute unilateral lesions in either hemisphere and a white-matter tractography atlas (HCP-842) using the Lesion Quantification Toolbox (LQT). Whole-brain voxel-based analysis indicated a left-hemispheric cluster of white matter fibers connecting the AG and superior temporal areas to be associated with a fact retrieval deficit. Subsequent analyses of direct grey-to-grey matter disconnections revealed that disconnections of additional left-hemispheric areas (e.g., between the superior temporal gyrus and parietal areas) were significantly associated with the observed fact retrieval deficit.Results imply that disconnections of parietal areas (i.e., the AG) with language-related areas (i.e., superior and middle temporal gyri) seem specifically detrimental to arithmetic fact retrieval. This suggests that arithmetic fact retrieval recruits a widespread left-hemispheric network and emphasizes the relevance of white matter connectivity for number processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.