Six novel homoleptic palladium(II) and platinum(II) complexes of donor-substituted alkenol ligands [PyCHC(R)OH; Py = pyridine, R = CH(3), CF(3), C(2)F(5), C(3)F(7)] of the general formula M[PyCHC(R)O](2) (M = Pd, Pt) were synthesized by reacting the deprotonated ligands with PdCl(2) and K(2)PtCl(4), respectively. Molecular structures, revealed by single-crystal X-ray diffraction analyses, showed a square-planar arrangement of ligands around palladium and platinum centers, with the pyridine-ring nitrogen atoms situated in a mutually trans position. The monomeric nature of the compounds in the solution state was confirmed by multinuclear ((1)H, (13)C, and (19)F) NMR spectroscopy. Thermal decomposition profiles recorded under a nitrogen atmosphere suggested their potential as volatile precursors to palladium and platinum materials. The volatility was increased upon elongation of the perfluoroalkyl chain, which suppressed the intermolecular interactions, as is evident in crystal packings. The volatility of these compounds was attributed to bidentate chelation of the alkenol units and cooperativity among the electron-back-donating nitrogen atom and interplay of electron-withdrawing C(x)F(y) groups, resulting in an effective steric shielding of the metal atoms.
The reaction of Cerium Ammonium Nitrate (CAN) with varying amounts of KO(t)Bu produced homometallic Ce(O(t)Bu)4(NC5H5)2 (1) and the heterometallic derivative KCe2(O(t)Bu)10 (3) characterized by X-ray diffraction and NMR spectroscopy. The oxo-alkoxide cluster Ce3O(O(t)Bu)9 (2) was obtained from a solution of cerium(IV) tetrakis(tert-butoxide) in n-heptane under stringent precautions to avoid any adventitious hydrolysis. Lewis acid-base reactions of in situ generated Ce(O(t)Bu)4(THF)2 (THF = tetrahydrofuran) with bi- and trivalent metal alkoxides [M(O(t)Bu)x]n (M = Ge, Sn; x = 2; n = 2; M = Pb, x = 2; n = 3; M = Al, Fe; x = 3; n = 2) resulted in volatile products of the general formula MCe(O(t)Bu)(4+x) (M = Al (4), Fe (5); x = 3; M = Ge (8), Sn (9), Pb (10); x = 2) in high yields. By dissolving 4 and 5 in pyridine the solvent adducts MCe(O(t)Bu)7(NC5H5) (M = Al (6), Fe (7)) were formed, whereas 8 and 9 reacted with Mo(CO)6 in boiling toluene to yield the termetallic complexes (CO)5MoM(μ2-O(t)Bu)3Ce(O(t)Bu)3 (M = Ge (11), Sn (12)). The new compounds were characterized by comprehensive spectral studies, mass spectroscopy, and single crystal X-ray diffraction analysis.
The complex formation of vanadium(IV) with cis-inositol (ino) and the corresponding trimethyl ether 1,3,5-trideoxy-1,3,5-trimethoxy-cis-inositol (tmci) was studied in aqueous solution and in the solid-state. With increasing pH, the formation of [VO(H-2L)], [(VO)2L2H-5]-, [VO(H-3L)]- (L = ino) or [(VO)2L2H-6]2- (L = tmci), [V(H-3L)2]2-, and [VO(H-3L)(OH)2]3- was observed. For the vanadium(IV)/ino system, [(VO)2L2H-7]3- was observed as an additional dinuclear species. The formation constants of these complexes were determined by potentiometric titrations (25 degrees C, 0.1 M KCl). In addition, the vanadium(IV)/ino system was investigated by means of UV-vis spectrophotometric methods. EPR spectroscopy and cyclic voltammetry confirmed this complexation scheme. EPR measurements indicated the formation of three distinct isomers of the non-oxo complex [V(H-3ino)2]2- in weakly basic solution. This type of isomerism, which is not observed for the vanadium(IV)/tmci system, was assigned to the ability of ino to bind the vanadium(IV) center with three alkoxo groups having either a 1,3,5-triaxial or an 1,2,3-axial-equatorial-axial arrangement. The structures of [V(H-3ino)2][K2(ino)2].4H2O (1) and [Na6V(H-3ino)2](SO4)2.6H2O (2) were determined by single-crystal X-ray analysis. In both compounds, the coordination of each ino molecule to the vanadium(IV) center via three axial deprotonated oxygen donors was confirmed. The centrosymmetric structure of the coordination spheres corresponds to an almost regular octahedral geometry with a twist angle of 60 degrees. The crystal structure of the potassium complex 1 represents an unusual 1:1 packing of [V(H-3ino)2]2- dianions and [K2(ino)2]2+ dications, in which both K+ ions have a coordination number of nine and are bonded simultaneously to a 1,3,5-triaxial and an 1,2,3-axial-equatorial-axial site of ino. In 2, the [V(H-3ino)2]2- complexes are surrounded by six Na+ counterions that are bonded to the axial alkoxo oxygens and to the equatorial hydroxy oxygens of the cis-inositolato moieties. The six Na+ centers are further interlinked by bridging sulfate ions. According to EPR spectroscopy, the D3d symmetric structure of the [V(H-3ino)2]2- anion is retained in H2O, in dimethylformamide, and in a mixture of CHCl3/toluene 60:40 v/v.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.