The composition of the human gut microbiome is well resolved, but predictive understanding of its dynamics is still lacking. Here, we followed a bottom-up strategy to explore human gut community dynamics: we established a synthetic community composed of three representative human gut isolates (Roseburia intestinalis L1-82, Faecalibacterium prausnitzii A2-165 and Blautia hydrogenotrophica S5a33) and explored their interactions under well-controlled conditions in vitro. Systematic mono- and pair-wise fermentation experiments confirmed competition for fructose and cross-feeding of formate. We quantified with a mechanistic model how well tri-culture dynamics was predicted from mono-culture data. With the model as reference, we demonstrated that strains grown in co-culture behaved differently than those in mono-culture and confirmed their altered behavior at the transcriptional level. In addition, we showed with replicate tri-cultures and simulations that dominance in tri-culture sensitively depends on the initial conditions. Our work has important implications for gut microbial community modeling as well as for ecological interaction detection from batch cultures.
We theoretically study the dynamics of two interacting microbial species in the chemostat. These species are competitors for a common resource, as well as mutualists due to cross-feeding. In line with previous studies (Assaneo, et al., 2013; Holland, et al., 2010; Iwata, et al., 2011), we demonstrate that this system has a rich repertoire of dynamical behavior, including bistability. Standard Lotka-Volterra equations are not capable to describe this particular system, as these account for only one type of interaction (mutualistic or competitive). We show here that the different steady state solutions can be well captured by an extended Lotka-Volterra model, which better describe the density-dependent interaction (mutualism at low density and competition at high density). This two-variable model provides a more intuitive description of the dynamical behavior than the chemostat equations.
In microbial ecosystems, species not only compete for common resources but may also display mutualistic interactions as a result from metabolic cross-feeding. Such mutualism can lead to bistability. Depending on the initial population sizes, species will either survive or go extinct. Various phenomenological models have been suggested to describe bistability in mutualistic systems. However, these models do not account for interaction mediators such as nutrients. In contrast, nutrient-explicit models do not provide an intuitive understanding of what causes bistability. Here, we reduce a theoretical nutrient-explicit model of two mutualistic cross-feeders in a chemostat, uncovering an explicit relation to a growth model with an Allee effect. We show that the dilution rate in the chemostat leads to bistability by turning a weak Allee effect into a strong Allee effect. This happens as long as there is more production than consumption of cross-fed nutrients. Thanks to the explicit relationship of the reduced model with the underlying experimental parameters, these results allow to predict the biological conditions that sustain or prevent the survival of mutualistic species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.