In this work, we present a novel biochemical sensing approach based on a plasmonic sensor chip, combined with a specific receptor, excited and interrogated via a custom 3D-printed holder through a transmission-based experimental setup, exploiting polymer optical fibers. The setup is designed to measure a disposable plasmonic chip based on a gold nanograting fabricated on a polymethylmethacrylate substrate. The examined sensor configurations here presented are simulated, realized, and experimentally tested. More specifically, first, a numerical analysis is carried out by changing several sensor parameters, then an experimental optical characterization of different sensor configurations is reported. Finally, to test the biosensing capabilities of the proposed method, as a proof of concept, we deposit on the best sensor configuration a biomimetic receptor specific for bovine serum albumin detection. The experimental results demonstrate that the proposed sensor shows an ultra-low limit of detection, equal to about 37 pmol/L.
In a specific biosensing application, a nanoplasmonic sensor chip has been tested by an experimental setup based on an aluminum holder and two plastic optical fibers used to illuminate and collect the transmitted light. The studied plasmonic probe is based on gold nanograting, realized on the top of a Poly(methyl methacrylate) (PMMA) chip. The PMMA substrate could be considered as a transparent substrate and, in such a way, it has been already used in previous work. Alternatively, here it is regarded as a slab waveguide. In particular, we have deposited upon the slab surface, covered with a nanograting, a synthetic receptor specific for bovine serum albumin (BSA), to test the proposed biosensing approach. Exploiting this different experimental configuration, we have determined how the orientation of the nanostripes forming the grating pattern, with respect to the direction of the input light (longitudinal or orthogonal), influences the biosensing performances. For example, the best limit of detection (LOD) in the BSA detection that has been obtained is equal to 23 pM. Specifically, the longitudinal configuration is characterized by two observable plasmonic phenomena, each sensitive to a different BSA concentration range, ranging from pM to µM. This aspect plays a key role in several biochemical sensing applications, where a wide working range is required.
The present paper aims to increase knowledge of the methods of resistance estimating of concrete in situ by means of non-destructive tests used to integrate the quantitative results from cylindrical specimens (core). The results of experimental investigations carried out on concrete conglomerate samples of a school building are shown. The experimental campaign then will be presented like a case study, conducted on a series of concrete beams and pillars of an existing building. The expression obtained through the calibration procedure of the values of non-destructive tests with those provided by the core drills allowed to estimate the average values of the compressive strength of the concrete. It is highlighted how this result was achieved with a very limited core number that are extracted in randomly selected points and that there was a proportionality link with the resistances obtained from non-destructive tests.
The present paper aims to increase knowlodge of the methods of resistance estimating of concrete in situ by means of non-destructive tests used to integrate the quantitative results from cylindrical specimens (core). The results of experimental investigations carried out on concrete conglomerate samples of a school building are shown. The experimental campaign then will be presented like a case study, conducted on a series of concrete beams and pillars of an existing building. The distructive tests on cores were conducted at the Civil Structures Laboratory of the Engineering Department of the University of Campania "Luigi Vanvitelli". The expression obtained through the calibration procedure of the values of non-destructive tests with those provided by the core drills allowed to estimate the average values of the compressive strength of the concrete. It is highlighted how this result was achieved with a very limited core number provided that they are extracted in selected points and that there was a proportionality link with the resistances obtained from non distructive tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.