Abstract. With increasing storage capacities on current PCs, searching the World Wide Web has ironically become more efficient than searching one's own personal computer. The recently introduced desktop search engines are a first step towards coping with this problem, but not yet a satisfying solution. The reason for that is that desktop search is actually quite different from its web counterpart. Documents on the desktop are not linked to each other in a way comparable to the web, which means that result ranking is poor or even inexistent, because algorithms like PageRank cannot be used for desktop search. On the other hand, desktop search could potentially profit from a lot of implicit and explicit semantic information available in emails, folder hierarchies, browser cache contexts and others. This paper investigates how to extract and store these activity based context information explicitly as RDF metadata and how to use them, as well as additional background information and ontologies, to enhance desktop search.
Abstract. Recommender algorithms have been quite successfully employed in a variety of scenarios from filtering applications to recommendations of movies and books at Amazon.com. However, all these algorithms focus on single item recommendations and do not consider any more complex recommendation structures. This paper explores how semantically rich complex recommendation structures, represented as RDF graphs, can be exchanged and shared in a distributed social network. After presenting a motivating scenario we define several annotation ontologies we use in order to describe context information on the user's desktop and show how our ranking algorithm can exploit this information. We discuss how social distributed networks and interest groups are specified using extended FOAF vocabulary, and how members of these interest groups share semantically rich recommendations in such a network. These recommendations transport shared context as well as ranking information, described in annotation ontologies. We propose an algorithm to compute these rankings which exploits available context information and show how rankings are influenced by the context received from other users as well as by the reputation of the members of the social network with whom the context is exchanged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.