The Tyrolean Iceman was a witness to the Neolithic-Copper Age transition in Central Europe 5350-5100 years ago, and his mummified corpse was recovered from an Alpine glacier on the Austro-Italian border in 1991 [1]. Using a mixed sequencing procedure based on PCR amplification and 454 sequencing of pooled amplification products, we have retrieved the first complete mitochondrial-genome sequence of a prehistoric European. We have then compared it with 115 related extant lineages from mitochondrial haplogroup K. We found that the Iceman belonged to a branch of mitochondrial haplogroup K1 that has not yet been identified in modern European populations. This is the oldest complete Homo sapiens mtDNA genome generated to date. The results point to the potential significance of complete-ancient-mtDNA studies in addressing questions concerning the genetic history of human populations that the phylogeography of modern lineages is unable to tackle.
The process of natural mummification is a rare and unique process from which little is known about the resulting microbial community structure. In the present study, we characterized the microbiome of paleofeces, and ascending, transverse and descending colon of an 11th century A.D. pre-Columbian Andean mummy by 16S rRNA gene high-throughput sequencing and metagenomics. Firmicutes were the most abundant bacterial group, with Clostridium spp. comprising up to 96.2% of the mummified gut, while Turicibacter spp. represented 89.2% of the bacteria identified in the paleofeces. Microbiome profile of the paleofeces was unique when compared to previously characterized coprolites that did not undergo natural mummification. We identified DNA sequences homologous to Clostridium botulinum, Trypanosoma cruzi and human papillomaviruses (HPVs). Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified. The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures. Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.
Plague continued to afflict Europe for more than five centuries after the Black Death. Yet, by the 17th century, the dynamics of plague had changed, leading to its slow decline in Western Europe over the subsequent 200 y, a period for which only one genome was previously available. Using a multidisciplinary approach, combining genomic and historical data, we assembled Y. pestis genomes from nine individuals covering four Eurasian sites and placed them into an historical context within the established phylogeny. CHE1 (Chechnya, Russia, 18th century) is now the latest Second Plague Pandemic genome and the first non-European sample in the post-Black Death lineage. Its placement in the phylogeny and our synthesis point toward the existence of an extra-European reservoir feeding plague into Western Europe in multiple waves. By considering socioeconomic, ecological, and climatic factors we highlight the importance of a noneurocentric approach for the discussion on Second Plague Pandemic dynamics in Europe.
The male human body found in an Alpine glacier on September 19, 1991 ("Tyrolean Iceman") has, for the first time in history, given scientists a chance to perform detailed anatomical, histological, and molecular investigations on the organs of a person from the Neolithic Age (5350-5100 B.P.). In the present study, tissue samples aseptically taken from the stomach and the colon of the mummy were utilized for DNA extraction, and the DNA was PCR-amplified, using primer pairs designed to bind to fragments of the 16s ribosomal RNA gene (16s rDNA) of a broad range of bacteria. The PCR products were cloned in plasmid vectors, and the recombinant clones (amplicons) were sequenced. The sequence data were finally used for scanning data libraries containing the corresponding sequences of present-day bacteria, to infer the putative ecophysiology of the ancient ones. The same procedure was repeated on some fragments of grass from the clothing found near the corpse. These fragments were taken as a control of the microbiological situation of the glacier. The results show that the flora of the Iceman's stomach is entirely composed of Burkholderia pickettii, an organism commonly found in aquatic habitats. The colon, on the other hand, contains several members of the fecal flora of humans, such as Clostridium perfringens, C. ghonii, C. sordellii, Eubacterium tenue, and Bacteroides sp. The Iceman's colon, however, was found to contain, rather unexpectedly, also some members of the genus Vibrio. The results are discussed in light of what is known about the preservation of microbial DNA at the Iceman's site and of previous parasitological studies performed on the Iceman himself and on human coprolites.
We have isolated DNA from 14 tissue samples from the internal organs of an Andean human mummy (10th-11th century A.D.) and have checked the persistence of the original human and bacterial templates using the following main approaches: 1) amino acid racemization test; 2) quantification of mitochondrial DNA copy number; 3) survey of bacterial DNA in the different organs; 4) sequence analysis of bacterial amplicons of different lengths. The results demonstrate that both the original human DNA and the DNA of the bacteria of the mummy gut are preserved. In particular, sequence analysis of two (respectively 100 and 196 bp in length) libraries of bacterial 16s ribosomal RNA gene amplicons from the mummy colon shows that while the shortest amplicons give only modest and biased indications about the bacterial taxa, the longer amplicons allow the identification several species of the genus Clostridium which are typical of the human colon. This work represents a first example of a methodological approach which is applicable, in principle, to many other natural and artificial mummies and might open the way to the study of the structure of the human microbial ecosystem from prehistory to present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.