Upon reaction with electrons, oxygen is transformed into reactive oxygen species (ROS). It has long been known that ROS can destroy bacteria and destroy human cells, but research in recent decades has highlighted new roles for ROS in health and disease. Indeed, while prolonged exposure to high ROS concentrations may lead to non-specific damage to proteins, lipids, and nucleic acids, low to intermediate ROS concentrations exert their effects rather through regulation of cell signalling cascades. Biological specificity is achieved through the amount, duration, and localisation of ROS production. ROS have crucial roles in normal physiological processes, such as through redox regulation of protein phosphorylation, ion channels, and transcription factors. ROS are also required for biosynthetic processes, including thyroid hormone production and crosslinking of extracellular matrix. There are multiple sources of ROS, including NADPH oxidase enzymes; similarly, there are a large number of ROS-degrading systems. ROS-related disease can be either due to a lack of ROS (e.g., chronic granulomatous disease, certain autoimmune disorders) or a surplus of ROS (e.g., cardiovascular and neurodegenerative diseases). For diseases caused by a surplus of ROS, antioxidant supplementation has proven largely ineffective in clinical studies, most probably because their action is too late, too little, and too non-specific. Specific inhibition of ROS-producing enzymes is an approach more promising of clinical efficacy.
Significance: Severe life stress (SLS), as opposed to trivial everyday stress, is defined as a serious psychosocial event with the potential of causing an impacting psychological traumatism. Recent Advances: Numerous studies have attempted to understand how the central nervous system (CNS) responds to SLS. This response includes a variety of morphological and neurochemical modifications; among them, oxidative stress is almost invariably observed. Oxidative stress is defined as disequilibrium between oxidant generation and the antioxidant response. Critical Issues: In this review, we discuss how SLS leads to oxidative stress in the CNS, and how the latter impacts pathophysiological outcomes. We also critically discuss experimental methods that measure oxidative stress in the CNS. The review covers animal models and human observations. Animal models of SLS include sleep deprivation, maternal separation, and social isolation in rodents, and the establishment of hierarchy in non-human primates. In humans, SLS, which is caused by traumatic events such as child abuse, war, and divorce, is also accompanied by oxidative stress in the CNS. Future Directions: The outcome of SLS in humans ranges from resilience, over post-traumatic stress disorder, to development of chronic mental disorders. Defining the sources of oxidative stress in SLS might in the long run provide new therapeutic avenues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.