Oxidative stress has been implicated in the pathogenesis of neurologic and psychiatric diseases. The brain is particularly vulnerable to oxidative damage due to high oxygen consumption, low antioxidant defense, and an abundance of oxidation-sensitive lipids. Production of reactive oxygen species (ROS) by mitochondria is generally thought to be the main cause of oxidative stress. However, a role for ROS-generating NADPH oxidase NOX enzymes has recently emerged. Activation of the phagocyte NADPH oxidase NOX2 has been studied mainly in microglia, where it plays a role in inflammation, but may also contribute to neuronal death in pathologic conditions. However, NOX-dependent ROS production can be due to the expression of other NOX isoforms, which are detected not only in microglia, but also in astrocytes and neurons. The physiologic and pathophysiologic roles of such NOX enzymes are only partially understood. In this review, we summarize the present knowledge about NOX enzymes in the central nervous system and their involvement in neurologic and psychiatric diseases.
Prions induce lethal neurodegeneration and consist of PrPSc, an aggregated conformer of the cellular prion protein PrPC. Antibody-derived ligands to the globular domain of PrPC (collectively termed GDL) are also neurotoxic. Here we show that GDL and prion infections activate the same pathways. Firstly, both GDL and prion infection of cerebellar organotypic cultured slices (COCS) induced the production of reactive oxygen species (ROS). Accordingly, ROS scavenging, which counteracts GDL toxicity in vitro and in vivo, prolonged the lifespan of prion-infected mice and protected prion-infected COCS from neurodegeneration. Instead, neither glutamate receptor antagonists nor inhibitors of endoplasmic reticulum calcium channels abolished neurotoxicity in either model. Secondly, antibodies against the flexible tail (FT) of PrPC reduced neurotoxicity in both GDL-exposed and prion-infected COCS, suggesting that the FT executes toxicity in both paradigms. Thirdly, the PERK pathway of the unfolded protein response was activated in both models. Finally, 80% of transcriptionally downregulated genes overlapped between prion-infected and GDL-treated COCS. We conclude that GDL mimic the interaction of PrPSc with PrPC, thereby triggering the downstream events characteristic of prion infection.
Subanesthetic doses of NMDA receptor antagonist ketamine induce schizophrenia-like symptoms in humans and behavioral changes in rodents. Subchronic administration of ketamine leads to loss of parvalbumin-positive interneurons through reactive oxygen species (ROS), generated by the NADPH oxidase NOX2. However, ketamine induces very rapid alterations, in both mice and humans. Thus, we have investigated the role of NOX2 in acute responses to subanesthetic doses of ketamine. In wild-type mice, ketamine caused rapid (30 min) behavioral alterations, release of neurotransmitters, and brain oxidative stress, whereas NOX2-deficient mice did not display such alterations. Decreased expression of the subunit 2A of the NMDA receptor after repetitive ketamine exposure was also precluded by NOX2 deficiency. However, neurotransmitter release and behavioral changes in response to amphetamine were not altered in NOX2-deficient mice. Our results suggest that NOX2 is a major source of ROS production in the prefrontal cortex controlling glutamate release and associated behavioral alterations after acute ketamine exposure. Prolonged NOX2-dependent glutamate release may lead to neuroadaptative downregulation of NMDA receptor subunits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.