Olfactory ensheathing cells (OECs) are cells that display Schwann cell or astrocyte-like properties. They are a source of growth factors and adhesion molecules which play a very important role as neuronal support enhancing cellular survival. Over the past 10 years, OECs have emerged as a leading reparative candidate, when transplanted into the injured spinal cord, having shown significant promise in the regeneration of spinal cord lesions. In this study we assessed the efficacy of OECs on the survival and neurite outgrowth of hippocampal neurons in vitro. Co-cultures of OECs and hippocampal of postnatal rats were successfully established and cells were immunocytochemically characterized. Some hippocampal cultures were added with growth factors, as bFGF, NGF and GDNF. Furthermore, conditioned medium from OECs cultures was used to feed some hippocampal neurons coverslips. Our results show that in co-cultures of hippocampal neurons and OECs the number of neurons and their neurite outgrowth were significantly increased in comparison with controls. Moreover, we showed that NGF and GDNF promoted a more positive effect in both neuronal survival and neurite outgrowth than bFGF. OEC-conditioned media stimulated both the neuronal survival and dense neurite outgrowth. These data indicate that OECs, as a source of growth factors, can promote the survival and the neurite outgrowth of hippocampal neurons in vitro and that bFGF, NGF and GDNF support them differently. Therefore, as OECs and their secreted growth factors appear to exert a neuroprotective effect for functional restoration and for neural plasticity in neurodegenerative disorders, they might be considered an approach for functional recovery.
BackgroundTrigeminal proprioception related to rodent macrovibrissae movements is believed to involve skin receptors on the whisker pad because pad muscles operate without muscle spindles. This study was aimed to investigate in rats whether the trigeminal mesencephalic nucleus (TMnu), which provides proprioceptive feedback for chewing muscles, may be also involved in whisker pad proprioception.MethodsTwo retrograde tracers, Dil and True Blue Chloride, were injected into the mystacial pad and the masseter muscle on the same side of deeply anesthetized rats to label the respective projecting sensory neurons. This double-labeling technique was used to assess the co-innervation of both structures by the trigeminal mesencephalic nucleus (TMnu).In a separate group of anesthetized animals, the spontaneous electrical activities of TMnu neurons were analyzed by extracellular recordings during spontaneous movements of the macrovibrissae. Mesencephalic neurons (TMne) were previously identified by their responses to masseter muscle stretching. Changes in TMne spontaneous electrical activities, analyzed under baseline conditions and during whisking movements, were statistically evaluated using Student's t-test for paired observations.ResultsNeuroanatomical experiments revealed different subpopulations of trigeminal mesencephalic neurons: i) those innervating the neuromuscular spindles of the masseter muscle, ii) those innervating the mystacial pad, and iii) those innervating both structures. Extracellular recordings made during spontaneous movements of the macrovibrisae showed that whisking neurons similar to those observed in the trigeminal ganglion were located in the TMnu. These neurons had different patterns of activation, which were dependent on the type of spontaneous macrovibrissae movement. In particular, their spiking activity tonically increased during fan-like movements of the vibrissae and showed phasic bursting during rhythmic whisking. Furthermore, the same neurons may also respond to masseter muscle stretch.Conclusionsresults strongly support the hypothesis that the TMnu also contains first-order neurons specialized for relaying spatial information related to whisker movement and location to trigeminal-cortical pathways. In fact, the TMnu projects to second-order trigeminal neurons, thus allowing the rat brain to deduce higher-order information regarding executed movements of the vibrissae by combining touch information carried by trigeminal ganglion neurons with proprioceptive information carried by mesencephalic neurons.
Ghrelin, a gastrointestinal hormone, is a modulator of the sense of smell. The main source of ghrelin in the central nervous system has been mainly observed in specific populations of hypothalamic neurons. An increasing number of studies have reported ghrelin synthesis and its effect on neurons outside the hypothalamus. Ghrelin and its receptors are expressed in the olfactory bulbs and in other centres of the brain, such as the amygdala, for processing olfactory signals, pyramidal neurons of the cerebral cortex and the dorsal vagal complex of the medulla oblongata. It is known that ghrelin is involved in cognitive mechanisms and eating behaviours, in fact, its expression increases in anticipation of food intake. In order to identify the existence of centrifugal direct afferents from the main olfactory bulb to the medial amygdala and the hypothalamus arcuate nucleus, in this work we used two retrograde tracers, Dil and Fluoro Gold, and immunohistochemical procedure to visualize positive ghrelin neurons. Our paper provides neuroanatomic support for the ghrelin modulation of smell. Our results show that ghrelin neuron projections from mitral cells of bulbs can transmit olfactory information via branching connections to the amygdala and the hypothalamus. This pathway could play an important role in regulating feeding behaviour in response to odours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.