Extracellular vesicles (EVs) that are derived from mesenchymal stromal cells (MSCs) have been shown to reprogram injured cells by activating regenerative processes. We herein investigate the potential therapeutic effect of EVs, shed by human bone marrow MSCs and by human liver stem-like cells (HLSCs), on the progression and reversion of fibrosis in a mouse model of diabetic nephropathy, as induced by streptozotocin. After the development of nephropathy, stem cell-derived EVs were administered weekly to diabetic mice for four weeks. The stem cell-derived EV treatment, but not the fibroblast EV treatment that was used as a control, significantly ameliorated functional parameters, such as albumin/creatinine excretion, plasma creatinine and blood urea nitrogen, which are altered in diabetic mice. Moreover, the renal fibrosis that develops during diabetic nephropathy progression was significantly inhibited in stem cell EV-treated animals. A correlation was found between the down regulation of several pro-fibrotic genes in renal tissues and the anti-fibrotic effect of HLSC and MSC EVs. A comparative analysis of HLSC and MSC EV miRNA content highlighted some common and some specific patterns of miRNAs that target predicted pro-fibrotic genes. In conclusion, stem cell-derived EVs inhibit fibrosis and prevent its progression in a model of diabetes-induced chronic kidney injury.
BackgroundTumor immune-escape has been related to the ability of cancer cells to inhibit T cell activation and dendritic cell (DC) differentiation. We previously identified a tumor initiating population, expressing the mesenchymal marker CD105, which fulfills the criteria for definition as cancer stem cells (CD105+ CSCs) able to release extracellular vesicles (EVs) that favor tumor progression and metastases. The aim of the present study was to compare the ability of renal CSCs and derived EVs to modulate the behavior of monocyte-derived DCs with a non-tumor initiating renal cancer cell population (CD105- TCs) and their EVs.MethodsMaturation of monocyte-derived DCs was studied in presence of CD105+ CSCs and CD105- TCs and their derived EVs. DC differentiation experiments were evaluated by cytofluorimetric analysis. T cell proliferation and ELISA assays were performed. Monocytes and T cells were purified from peripheral blood mononuclear cells obtained from healthy donors.ResultsThe results obtained demonstrate that both CD105+ CSCs and CD105- TCs impaired the differentiation process of DCs from monocytes. However, the immune-modulatory effect of CD105+ CSCs was significantly greater than that of CD105- TCs. EVs derived from CD105+ CSCs and in less extent, those derived from CD105- TCs retained the ability to impair monocyte maturation and T cell activation. The mechanism has been mainly related to the expression of HLA-G by tumor cells and to its release in a form associated to EVs. HLA-G blockade significantly reduced the inhibitory effect of EVs on DC differentiation.ConclusionsIn conclusion, the results of the present study indicate that renal cancer cells and in particular CSCs and derived EVs impair maturation of DCs and T cell immune response by a mechanism involving HLA-G.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-2025-z) contains supplementary material, which is available to authorized users.
Cancer stem cells (CSCs) are considered as responsible for initiation, maintenance and recurrence of solid tumors, thus representing the key for tumor eradication. The antitumor activity of extracellular vesicles (EVs) derived from different stem cell sources has been investigated with conflicting results. In our study, we evaluated, both in vitro and in vivo , the effect of EVs derived from human bone marrow mesenchymal stromal cells (MSCs) and from a population of human liver stem cells (HLSCs) of mesenchymal origin on renal CSCs. In vitro , both EV sources displayed pro‐apoptotic, anti‐proliferative and anti‐invasive effects on renal CSCs, but not on differentiated tumor cells. Pre‐treatment of renal CSCs with EVs, before subcutaneous injection in SCID mice, delayed tumor onset. We subsequently investigated the in vivo effect of MSC‐ and HLSC‐EVs systemic administration on progression of CSC‐generated renal tumors. Tumor bio‐distribution analysis identified intravenous treatment as best route of administration. HLSC‐EVs, but not MSC‐EVs, significantly impaired subcutaneous tumor growth by reducing tumor vascularization and inducing tumor cell apoptosis. Moreover, intravenous treatment with HLSC‐EVs improved metastasis‐free survival. In EV treated tumor explants, we observed both the transfer and the induction of miR‐145 and of miR‐200 family members. In transfected CSCs, the same miRNAs affected cell growth, invasion and survival. In conclusion, our results showed a specific antitumor effect of HLSC‐EVs on CSC‐derived renal tumors in vivo , possibly ascribed to the transfer and induction of specific antitumor miRNAs. Our study provides further evidence for a possible clinical application of stem cell‐EVs in tumor treatment.
It is well recognized that Cancer Stem Cells (CSCs) sustain the initiation, the maintenance and the recurrence of tumors. We previously reported that extracellular vesicles (EVs) derived from human liver stem cells (HLSCs) were able to limit tumor development. In this study, we evaluated whether EV derived from HLSCs could act in synergy with tyrosine kinase inhibitors (TKIs) on apoptosis of CSCs isolated from renal carcinomas. For this purpose, we administered to renal CSCs, HLSC-EVs and TKIs, as co-incubation or sequential administration. We found that HLSC-EVs in combination with Sunitinb or Sorafenib significantly increased renal CSCs apoptosis induced by low TKI dose. At variance, no synergistic effect was observed when bone marrow mesenchymal stem cell-derived EVs were used. In particular, renal CSCs chemosensitivity to TKIs was enhanced when HLSC-EVs were either co-administered with TKIs or added after, but not before. CSC apoptosis was also incremented at a percentage comparable to that of co-administration when TKIs were loaded in HLSC-EVs. By a mechanistic point of view, Akt/mTOR and Erk and Creb intracellular pathways, known to be pivotal in the induction of tumor growth and survival, appeared modulated as consequence of TKIs/HLSC-EVs co-administration. Together, our results indicate that the synergistic effect of HLSC-EVs with TKIs may increase the response to TKIs at low doses, providing a rational for their combined use in the treatment of renal carcinoma.
in vivo tests • lipid bilayers • organic coating • protein corona • stealth nanoparticles • thrombogenicity Nanomedicine (Lond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.