Abstract. In this work we give a positive answer to the following question: does Stochastic Mechanics uniquely define a three-dimensional stochastic process which describes the motion of a particle in a Bose-Einstein condensate? To this extent we study a system of N trapped bosons with pair interaction at zero temperature under the Gross-Pitaevskii scaling, which allows to give a theoretical proof of Bose-Einstein condensation for interacting trapped gases in the limit of N going to infinity. We show that under the assumption of strictly positivity and continuous differentiability of the many-body ground state wave function it is possible to rigorously define a one-particle stochastic process, unique in law, which describes the motion of a single particle in the gas and we show that, in the scaling limit, the one-particle process continuously remains outside a time dependent random "interaction-set" with probability one. Moreover, we prove that its stopped version converges, in a relative entropy sense, toward a Markov diffusion whose drift is uniquely determined by the order parameter, that is the wave function of the condensate.
A new notion of stochastic transformation is proposed and applied to the study of both weak and strong symmetries of stochastic differential equations (SDEs). The correspondence between an algebra of weak symmetries for a given SDE and an algebra of strong symmetries for a modified SDE is proved under suitable regularity assumptions. This general approach is applied to a stochastic version of a two dimensional symmetric ordinary differential equation and to the case of two dimensional Brownian motion.
Stochastic symmetries and related invariance properties of finite dimensional SDEs driven by general càdlàg semimartingales taking values in Lie groups are defined and investigated. In order to enlarge the class of possible symmetries of SDEs, the new concepts of gauge and time symmetries for semimartingales on Lie groups are introduced. Markovian and non-Markovian examples of gauge and time symmetric processes are provided. The considered set of SDEs includes affine and Marcus type SDEs as well as smooth SDEs driven by Lévy processes. Non trivial invariance results concerning a class of iterated random maps are obtained as special cases.
An algorithmic method to exploit a general class of infinitesimal symmetries for reducing stochastic differential equations is presented and a natural definition of reconstruction, inspired by the classical reconstruction by quadratures, is proposed. As a side result the well-known solution formula for linear onedimensional stochastic differential equations is obtained within this symmetry approach. The complete procedure is applied to several examples with both theoretical and applied relevance.
Aiming at enlarging the class of symmetries of an SDE, we introduce a family of stochastic transformations able to change also the underlying probability measure exploiting Girsanov Theorem and we provide new determining equations for the infinitesimal symmetries of the SDE. The well-defined subset of the previous class of measure transformations given by Doob transformations allows us to recover all the Lie point symmetries of the Kolmogorov equation associated with the SDE. This gives the first stochastic interpretation of all the deterministic symmetries of the Kolmogorov equation. The general theory is applied to some relevant stochastic models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.