Flavonoid 30 -hydroxylase (F3 0 H) and flavonoid 3 0 ,5 0 -hydroxylase (F3 0 5 0 H) are cytochrome P450 enzymes and determine the B-ring hydroxylation pattern of flavonoids by introducing hydroxyl groups at the 3 0 -or the 3 0 -and 5 0 -position, respectively. Sequence identity between F3 0 H and F3 0 5 0 H is generally low since their divergence took place early in the evolution of higher plants. However, in the Asteraceae the family-specific evolution of an F3 0 5 0 H from an F3 0 H precursor occurred, and consequently sequence identity is substantially higher. We used this phenomenon for alignment studies, in order to identify regions which could be involved in determining substrate specificity and functionality. Subsequent construction and expression of chimeric genes indicated that substrate specificity of F3 0 H and F3 0 5 0 H is determined near the N-terminal end and the functional difference between these two enzymes near the C-terminal end. The impact on function of individual amino acids located in substrate recognition site 6 (SRS6) was further tested by site-directed mutagenesis. Most interestingly, a conservative Thr to Ser exchange at position 487 conferred additional 5 0 -hydroxylation activity to recombinant Gerbera hybrida F3 0 H, whereas the reverse substitution transformed recombinant Osteospermum hybrida F3 0 5 0 H into an F3 0 H with low remaining 5 0 -hydroxylation activity. Since the physicochemical properties of Thr and Ser are highly similar, the difference in size appears to be the main factor contributing to functional difference. The results further suggest that relatively few amino acids exchanges were required for the evolutionary extension of 3 0 -to 3 0 ,5 0 -hydroxylation activity.
Multiple F3'5'H evolution from F3'H has occurred in dicotyledonous plants. Efficient pollinator attraction is probably the driving force behind, as this allowed for the synthesis of delphinidin-based blue anthocyanins. The cytochrome P450-dependent monooxygenases flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) hydroxylate the B-ring of flavonoids at the 3'- and 3'- and 5'-position, respectively. Their divergence took place early in plant evolution. While F3'H is ubiquitously present in higher plants, the distribution of F3'5'H is scattered. Here, we report that F3'5'H has repeatedly evolved from F3'H precursors at least four times in dicotyledonous plants: In the Asteraceae, we identified F3'5'Hs specific for the subfamilies Cichorioideae and Asteroideae, and additionally an F3'5'H that seems to be specific for the genus Echinops of the subfamily Carduoideae; moreover, characterisation of a sequence from Billardiera heterophylla (formerly Sollya heterophylla) (Pittosporaceae) showed that the independent evolution of an F3'5'H has occurred at least once also in another family. The evolution of F3'5'H from an F3'H precursor represents a gain of enzymatic function, probably triggered by an amino acid change at one position of substrate recognition site 6. The gain of F3'5'H activity allows for the synthesis of delphinidin-based anthocyanins which usually provide the basis for lilac to blue flower colours. Therefore, the need for an efficient pollinator attraction is probably the driving force behind the multiple F3'5'H evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.