Breast Cancer Research Group (BOOG) 16, * Short-term fasting protects tumor-bearing mice against the toxic effects of chemotherapy while enhancing therapeutic efficacy. We randomized 131 patients with HER2-negative stage II/III breast cancer, without diabetes and a BMI over 18 kg m −2 , to receive either a fasting mimicking diet (FMD) or their regular diet for 3 days prior to and during neoadjuvant chemotherapy. Here we show that there was no difference in toxicity between both groups, despite the fact that dexamethasone was omitted in the FMD group. A radiologically complete or partial response occurs more often in patients using the FMD (OR 3.168, P = 0.039). Moreover, per-protocol analysis reveals that the Miller&Payne 4/5 pathological response, indicating 90-100% tumor-cell loss, is more likely to occur in patients using the FMD (OR 4.109, P = 0.016). Also, the FMD significantly curtails chemotherapy-induced DNA damage in T-lymphocytes. These positive findings encourage further exploration of the benefits of fasting/FMD in cancer therapy. Trial number: NCT02126449.
BackgroundPreclinical evidence shows that short-term fasting (STF) protects healthy cells against side effects of chemotherapy and makes cancer cells more vulnerable to it. This pilot study examines the feasibility of STF and its effects on tolerance of chemotherapy in a homogeneous patient group with early breast cancer (BC).MethodsEligible patients had HER2-negative, stage II/III BC. Women receiving (neo)-adjuvant TAC (docetaxel/doxorubicin/cyclophosphamide) were randomized to fast 24 h before and after commencing chemotherapy, or to eat according to the guidelines for healthy nutrition. Toxicity in the two groups was compared. Chemotherapy-induced DNA damage in peripheral blood mononuclear cells (PBMCs) was quantified by the level of γ-H2AX analyzed by flow cytometry.ResultsThirteen patients were included of whom seven were randomized to the STF arm. STF was well tolerated. Mean erythrocyte- and thrombocyte counts 7 days post-chemotherapy were significantly higher (P = 0.007, 95 % CI 0.106-0.638 and P = 0.00007, 95 % CI 38.7-104, respectively) in the STF group compared to the non-STF group. Non-hematological toxicity did not differ between the groups. Levels of γ-H2AX were significantly increased 30 min post-chemotherapy in CD45 + CD3- cells in non-STF, but not in STF patients.ConclusionsSTF during chemotherapy was well tolerated and reduced hematological toxicity of TAC in HER2-negative BC patients. Moreover, STF may reduce a transient increase in, and/or induce a faster recovery of DNA damage in PBMCs after chemotherapy. Larger studies, investigating a longer fasting period, are required to generate more insight into the possible benefits of STF during chemotherapy.Trial registrationClinicalTrials.gov: NCT01304251, March 2011Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1663-5) contains supplementary material, which is available to authorized users.
Growing preclinical evidence shows that short-term fasting (STF) protects from toxicity while enhancing the efficacy of a variety of chemotherapeutic agents in the treatment of various tumour types. STF reinforces stress resistance of healthy cells, while tumor cells become even more sensitive to toxins, perhaps through shortage of nutrients to satisfy their needs in the context of high proliferation rates and/or loss of flexibility to respond to extreme circumstances. In humans, STF may be a feasible approach to enhance the efficacy and tolerability of chemotherapy. Clinical research evaluating the potential of STF is in its infancy. This review focuses on the molecular background, current knowledge and clinical trials evaluating the effects of STF in cancer treatment. Preliminary data show that STF is safe, but challenging in cancer patients receiving chemotherapy. Ongoing clinical trials need to unravel if STF can also diminish toxicity and increase efficacy of chemotherapeutic regimes in daily practice.
BackgroundThe insulin-like growth factor 1 (IGF-1) pathway is involved in cell growth and proliferation and is associated with tumorigenesis and therapy resistance. This study aims to elucidate whether variation in the IGF-1 pathway is predictive for pathologic response in early HER2 negative breast cancer (BC) patients, taking part in the phase III NEOZOTAC trial, randomizing between 6 cycles of neoadjuvant TAC chemotherapy with or without zoledronic acid.MethodsFormalin-fixed paraffin-embedded tissue samples of pre-chemotherapy biopsies and operation specimens were collected for analysis of IGF-1 receptor (IGF-1R) expression (n = 216) and for analysis of 8 candidate single nucleotide polymorphisms (SNPs) in genes of the IGF-1 pathway (n = 184) using OpenArray® RealTime PCR. Associations with patient and tumor characteristics and chemotherapy response according to Miller and Payne pathologic response were performed using chi-square and regression analysis.ResultsDuring chemotherapy, a significant number of tumors (47.2 %) showed a decrease in IGF-1R expression, while in a small number of tumors an upregulation was seen (15.1 %). IGF-1R expression before treatment was not associated with pathological response, however, absence of IGF-1R expression after treatment was associated with a better response in multivariate analysis (P = 0.006) and patients with a decrease in expression during treatment showed a better response to chemotherapy as well (P = 0.020). Moreover, the variant T allele of 3129G > T in IGF1R (rs2016347) was associated with a better pathological response in multivariate analysis (P = 0.032).ConclusionsAbsent or diminished expression of IGF-1R after neoadjuvant chemotherapy was associated with a better pathological response. Additionally, we found a SNP (rs2016347) in IGF1R as a potential predictive marker for chemotherapy efficacy in BC patients treated with TAC.Trial registrationClinicalTrials.gov NCT01099436. Registered April 6, 2010.
Purpose In the phase II DIRECT study a fasting mimicking diet (FMD) improved the clinical response to neoadjuvant chemotherapy as compared to a regular diet. Quality of Life (QoL) and illness perceptions regarding the possible side effects of chemotherapy and the FMD were secondary outcomes of the trial. Methods 131 patients with HER2-negative stage II/III breast cancer were recruited, of whom 129 were randomly assigned (1:1) to receive either a fasting mimicking diet (FMD) or their regular diet for 3 days prior to and the day of neoadjuvant chemotherapy. The European Organisation for Research and Treatment of Cancer (EORTC) questionnaires EORTC-QLQ-C30 and EORTC-QLQ-BR23; the Brief Illness Perception Questionnaire (BIPQ) and the Distress Thermometer were used to assess these outcomes at baseline, halfway chemotherapy, before the last cycle of chemotherapy and 6 months after surgery. Results Overall QoL and distress scores declined during treatment in both arms and returned to baseline values 6 months after surgery. However, patients’ perceptions differed slightly over time. In particular, patients receiving the FMD were less concerned and had better understanding of the possible adverse effects of their treatment in comparison with patients on a regular diet. Per-protocol analyses yielded better emotional, physical, role, cognitive and social functioning scores as well as lower fatigue, nausea and insomnia symptom scores for patients adherent to the FMD in comparison with non-adherent patients and patients on their regular diet. Conclusions FMD as an adjunct to neoadjuvant chemotherapy appears to improve certain QoL and illness perception domains in patients with HER2-negative breast cancer. Trialregister ClinicalTrials.gov Identifier: NCT02126449.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.