Radiotherapy (RT) is a mainstay in the treatment of solid tumors and works by physicochemical reactions inducing oxidative stress in cells. Because in practice the efficacy of RT is limited by its toxicity to normal tissues, any strategy that selectively increases the radiosensitivity of tumor cells or boosts the radioresistance of normal cells is a valuable adjunct to RT. In this review, I summarize preclinical and clinical data supporting the hypothesis that ketogenic therapy through fasting and/or ketogenic diets can be utilized as such an adjunct in order to improve the outcome after RT, in terms of both higher tumor control and lower normal-tissue complication probability. The first effect relates to the metabolic shift from glycolysis towards mitochondrial metabolism, which selectively increases reactive oxygen species (ROS) production and impairs adenoside triphosphate (ATP) production in tumor cells. The second effect is based on the differential stress resistance phenomenon describing the reprogramming of normal cells, but not tumor cells, from proliferation towards maintenance and stress resistance when glucose and growth factor levels are decreased and ketone body levels are elevated. Underlying both effects are metabolic differences between normal and tumor cells. Ketogenic therapy is a non-toxic and cost-effective complementary treatment option that exploits these differences and deserves further clinical investigation.