Copper alloys with chromium, hafnium, and scandium combining enhanced strength as well as high electrical and thermal conductivity are analyzed in depth. The aim is to compare the precipitation process during temperature exposure to meet increasing material requirements. This research focuses on alloying elements having a limited, maximum 1 wt.%, and with temperature decreasing solubility in copper. For the simultaneous enhancement of mechanical strength and conductivity, precipitation hardening is the utilized mechanism during the processing of as-casted annealed and quenched specimens and in combination with optional cold-rolling prior to the aging process. Extensive DSC measurements, accompanied by metallographic investigations, and the analysis of hardness and electrical conductivity, lead to a versatile description and comparison of different alloying systems. CuCr0.7 starts to precipitate early and is mainly influenced by the temperature of aging. Provoking the solid solution with cold deformation has a less significant influence on the following precipitation. CuSc0.3 and CuHf0.7 precipitate at higher temperatures and are highly influenced by cold deformation prior to aging. Furthermore, CuHf0.7 and CuSc0.3 show advantages regarding the recrystallization behavior, making them especially applicable for higher operating temperatures. Future research will assess ternary alloy combinations to further scoop the potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.