In this work we investigate the impact of differently sized plain silica nanoparticles (NPs) between 10 and 200 nm on the crystallization of lysozyme (LSZ). In the first part of our work we investigate the electrostatic interactions between LSZ and NPs by zeta potential measurements and place special emphasis on the adsorption behavior of LSZ@SiO 2 . The determined adsorption isothermsderived from UV−vis spectroscopyindicate that with increasing particle size more LSZ is adsorbed per NP surface area probably due to a size-dependent surface chemistry and the variation of surface curvature. Second, seeded crystallization experiments both at the microliter and milliliter scale and thus close to a technically relevant scale were performed. A clearly extended crystallization window upon the addition of seed particles toward lower protein and salt concentrations was found. Moreover, induction times of crystal formation and crystallization times were considerably reduced. These effects were intensified with the addition of larger seed particles. In general, with the addition of silica seed particles, a shift of the final crystal size distribution to larger structures is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.