Mixtures of β-lactoglobulin (BLG) and sodium dodecyl sulfate (SDS) were studied at pH 3.8 and 6.7 under equilibrium conditions. At these pH conditions, BLG carries either a positive or a negative net charge, respectively, which enables tunable electrostatic interactions between anionic SDS surfactants and BLG proteins. For pH 3.8, vibrational sum-frequency generation (SFG) and ellipsometry indicate strong BLG-SDS complex formation at air-water interfaces that is caused by attractive electrostatic interactions. The latter complexes are already formed in the bulk solution which was confirmed by a thermodynamic study of BLG-SDS mixtures using isothermal titration calorimetry (ITC). For acidic conditions we determine from our ITC data an exothermal binding enthalpy of -40 kJ mol(-1). Increasing SDS/BLG molar ratios above 10 leads to a surface excess of SDS and thus to a charge reversal from a positive net charge with BLG as the dominating surface adsorbed species to a negatively charged layer with SDS as the dominating surface species. The latter is evidenced by a pronounced minimum in SFG intensities that is also accompanied by a phase change of O-H stretching bands due to a reorientation of H2O within the local electric field. This phase change which occurs at SDS/BLG molar ratio between 1 and 10 causes a polarity change in SFG intensities from BLG aromatic C-H stretching vibrations. Conclusions from SFG spectra are corroborated by ellipsometry which shows a dramatic increase in layer thicknesses at molar ratios where a charge reversal occurs. The formation of interfacial multilayers comprising SDS-BLG complexes is, thus, caused by cancellation of electrostatic interactions which leads to agglomeration at the interface. In contrast to pH 3.8, behavior of BLG-SDS mixtures at pH 6.7 is different due to repulsive electrostatic interactions between SDS and BLG which lead to a significantly reduced binding enthalpy of -17 kJ mol(-1). Finally, it has to be mentioned that SFG spectra show a coexistence of BLG and SDS molecules at the interface for BLG-SDS molar ratios > 2.
In this work we investigate the impact of differently sized plain silica nanoparticles (NPs) between 10 and 200 nm on the crystallization of lysozyme (LSZ). In the first part of our work we investigate the electrostatic interactions between LSZ and NPs by zeta potential measurements and place special emphasis on the adsorption behavior of LSZ@SiO 2 . The determined adsorption isothermsderived from UV−vis spectroscopyindicate that with increasing particle size more LSZ is adsorbed per NP surface area probably due to a size-dependent surface chemistry and the variation of surface curvature. Second, seeded crystallization experiments both at the microliter and milliliter scale and thus close to a technically relevant scale were performed. A clearly extended crystallization window upon the addition of seed particles toward lower protein and salt concentrations was found. Moreover, induction times of crystal formation and crystallization times were considerably reduced. These effects were intensified with the addition of larger seed particles. In general, with the addition of silica seed particles, a shift of the final crystal size distribution to larger structures is observed.
We show that aggregation plays a major role in seeded growth of protein crystals. The seeded batch approach provides the opportunity to set the starting conditions for protein crystallization by adding a defined amount of wellcharacterized seed particles. The experimental observations for tetragonal hen egg-white lysozyme (LSZ) confirm the concept of the oriented aggregation of larger building blocks to form a protein crystal. It was shown that the aggregation of the seed particles/bioconjugates is advantageous for the product quality in terms of larger and more defined LSZ crystals and in terms of accelerated reaction kinetics. We present a population balance (PB) model for the seeded batch crystallization of LSZ considering the aggregation of growth units to form protein crystals. For the modeling of crystal growth, evolving particle size distributions (PSDs) of agglomerating LSZ molecules were measured by dynamic light scattering (DLS). Moreover, the aggregation of seed particles in LSZ solutions under crystallization conditions was investigated by DLS. In line with our expectations, the number of seeds was found to be important as it strongly affects the collision frequency in the aggregation term of our PB model. Finally, the applied model gives trends of the supersaturation depletion curves and orders of magnitude of the measured CSDs in particle size correctly, ranging from only a few nanometers up to micrometer-sized particles/crystals. Thus, by the combination of PB modeling and experimentally determined crystallization parameters, insights into the crystal formation mechanism were obtained. To the best of our knowledge, this is the first attempt to model growth within a crystal population by an aggregation mechanism induced by seeding with foreign particles.
The adsorption behavior and electronic interactions of bovine serum albumin (BSA) with ZnO nanorod surfaces were investigated using high-resolution transmission electron microscopy as well as stationary and time-resolved optical spectroscopy techniques. Transmission electron microscopy shows that ZnO nanorod surfaces are surrounded by a homogeneous amorphous BSA film with thicknesses between ~2.5 and 5.0 nm. The electronic structure and adsorption geometry of BSA were examined using high-angle annular dark field scanning transmission electron microscopy combined with electron energy loss spectroscopy. The adsorption process was observed to result into an unfolded conformation of BSA becoming predominantly bound in the side-on orientation at the ZnO surface. This adsorption mode of the BSA molecules allows for a strong interaction with surface states of the ZnO nanorods. This is obvious from its efficient quenching of the defect-center photoluminescence of ZnO. Complementary information of electronic interactions across the ZnO nanorod interface was obtained from femtosecond transient absorption spectroscopy experiments. The rise dynamics of the measured transients revealed altered hole trapping dynamics and, thus, indicated to heterogeneous charge transfer as emerging from adsorbed BSA molecules to defect centers of the ZnO interface.
The aggregation process and conformational change of two monoclonal antibodies, monitored by in situ measuring techniques during stressing in a well-defined flow field, was experimentally studied. The increase in turbidity, which was detected by in-situ UV-vis spectroscopy, was attributed to the formation of aggregates. A stronger aggregate formation could be related to the higher exposure of hydrophobic groups, which was monitored by in situ fluorescence spectroscopy. Both presented techniques are powerful methods to monitor the aggregation process of monoclonal antibodies directly in flow fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.