In the auditory modality, music and speech have high informational and emotional value for human beings. However, the degree of the functional specialization of the cortical and subcortical areas in encoding music and speech sounds is not yet known. We investigated the functional specialization of the human auditory system in processing music and speech by functional magnetic resonance imaging recordings. During recordings, the subjects were presented with saxophone sounds and pseudowords /ba:ba/ with comparable acoustical content. Our data show that areas encoding music and speech sounds differ in the temporal and frontal lobes. Moreover, slight variations in sound pitch and duration activated thalamic structures differentially. However, this was the case with speech sounds only while no such effect was evidenced with music sounds. Thus, our data reveal the existence of a functional specialization of the human brain in accurately representing sound information at both cortical and subcortical areas. They indicate that not only the sound category (speech/music) but also the sound parameter (pitch/duration) can be selectively encoded.
When compared with individuals without explicit training in music, adult musicians have facilitated neural functions in several modalities. They also display structural changes in various brain areas, these changes corresponding to the intensity and duration of their musical training. Previous studies have focused on investigating musicians with training in Western classical music. However, musicians involved in different musical genres may display highly differentiated auditory profiles according to the demands set by their genre, i.e., varying importance of different musical sound features. This hypothesis was tested in a novel melody paradigm including deviants in tuning, timbre, rhythm, melody transpositions, and melody contour. Using this paradigm while the participants were watching a silent video and instructed to ignore the sounds, we compared classical, jazz, and rock musicians' and non-musicians' accuracy of neural encoding of the melody. In all groups of participants, all deviants elicited an MMN response, which is a cortical index of deviance discrimination. The strength of the MMN and the subsequent attentional P3a responses reflected the importance of various sound features in each music genre: these automatic brain responses were selectively enhanced to deviants in tuning (classical musicians), timing (classical and jazz musicians), transposition (jazz musicians), and melody contour (jazz and rock musicians). Taken together, these results indicate that musicians with different training history have highly specialized cortical reactivity to sounds which violate the neural template for melody content.
The DACS significantly improved hearing, speech intelligibility, and satisfaction in patients with a severe-to-profound mixed hearing loss and can be considered a safe and useful alternative to conventional hearing aids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.