Developmental dyslexia has been assumed to arise from general auditory deficits, compromising rapid temporal integration both of linguistic and nonlinguistic acoustic stimuli. Because the effort of auditory temporal processing of speech and nonspeech test materials may depend on presentation rate, fMRI measurements were performed in dyslexics and controls during passive listening to series of syllable and click sounds, using a parametric approach. Controls showed a decrease of hemodynamic brain activation within the right and an increase within the left anterior insula as a function of the presentation rate both of click as well as syllable trains. By contrast, dyslexics exhibited this profile of hemodynamic responses under the nonspeech condition only. As concerns syllables, activation in dyslexics did not depend on presentation rate. Moreover, a subtraction analysis of hemodynamic main effects across conditions and groups revealed decreased activation both of the left and right anterior insula in dyslexics compared to controls during application both of click and syllables. These results indicate, in line with preceding studies, that the insula of both hemispheres is involved in auditory temporal processing of nonlinguistic auditory stimuli and demonstrate, furthermore, that these operations of intrasylvian cortex also extend to the linguistic domain. In addition, our data suggest that the anterior insula represents an important neural correlate of deficient temporal processing of speech and nonspeech sounds in dyslexia.