Skeletal muscle is an archetypal organ whose structure is tuned to match function. The magnitude of order in muscle fibers and myofibrils containing motor protein polymers determines the directed force output of the summed force vectors and, therefore, the muscle’s power performance on the structural level. Structure and function can change dramatically during disease states involving chronic remodeling. Cellular remodeling of the cytoarchitecture has been pursued using noninvasive and label-free multiphoton second harmonic generation (SHG) microscopy. Hereby, structure parameters can be extracted as a measure of myofibrillar order and thus are suggestive of the force output that a remodeled structure can still achieve. However, to date, the parameters have only been an indirect measure, and a precise calibration of optical SHG assessment for an exerted force has been elusive as no technology in existence correlates these factors. We engineered a novel, automated, high-precision biomechatronics system into a multiphoton microscope allows simultaneous isometric Ca2+-graded force or passive viscoelasticity measurements and SHG recordings. Using this MechaMorph system, we studied force and SHG in single EDL muscle fibers from wt and mdx mice; the latter serves as a model for compromised force and abnormal myofibrillar structure. We present Ca2+-graded isometric force, pCa-force curves, passive viscoelastic parameters and 3D structure in the same fiber for the first time. Furthermore, we provide a direct calibration of isometric force to morphology, which allows noninvasive prediction of the force output of single fibers from only multiphoton images, suggesting a potential application in the diagnosis of myopathies.
Mutations in the
Des
gene coding for the muscle-specific intermediate filament protein desmin lead to myopathies and cardiomyopathies. We previously generated a R349P desmin knock-in mouse strain as a patient-mimicking model for the corresponding most frequent human desmin mutation R350P. Since nothing is known about the age-dependent changes in the biomechanics of affected muscles, we investigated the passive and active biomechanics of small fiber bundles from young (17–23 wks), adult (25–45 wks) and aged (>60 wks) heterozygous and homozygous R349P desmin knock-in mice in comparison to wild-type littermates. We used a novel automated biomechatronics platform, the
MyoRobot
, to perform coherent quantitative recordings of passive (resting length-tension curves, visco-elasticity) and active (caffeine-induced force transients, pCa-force, ‘slack-tests’) parameters to determine age-dependent effects of the R349P desmin mutation in slow-twitch
soleus
and fast-twitch
extensor
digitorum longus
small fiber bundles. We demonstrate that active force properties are not affected by this mutation while passive steady-state elasticity is vastly altered in R349P desmin fiber bundles compatible with a pre-aged phenotype exhibiting stiffer muscle preparations. Visco-elasticity on the other hand, was not altered. Our study represents the first systematic age-related characterization of small muscle fiber bundle preparation biomechanics in conjunction with inherited desminopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.