Several experimental and clinical studies have shown that dietary nitrate supplementation can increase nitric oxide bioavailability. In the oral cavity, commensal bacteria reduce nitrate to nitrite, which is subsequently absorbed into the circulation where reduction to nitric oxide by enzymatic systems occur. Although it is well-known that boosting the nitrate-nitrite-nitric oxide pathway can improve cardiovascular, renal, and metabolic functions and that sympathoexcitation contributes to the development of the same disorders, the potential effects of dietary nitrate on sympathetic activity remain to be elucidated. In this study, we hypothesized that treatment with inorganic nitrate could prevent the increase in sympathetic nerve activity in an experimental model of Ang II (angiotensin II)–induced hypertension. Multiple in vivo approaches were combined, that is, Wistar rats orally treated with the nitric oxide synthase inhibitor L-NAME (N(G)-nitro-L-arginine methyl ester, 0.5 g/L) and implanted with subcutaneous osmotic minipump for continuous delivery of Ang II (120 ng/kg per minute; 14 days). Simultaneously, rats were supplemented with sodium nitrate (10 mmol/L) or placebo (sodium chloride; 10 mmol/L) in the drinking water. Blood pressure, heart rate, and renal sympathetic nerve activity were recorded. In placebo-treated rats, Ang II+L-NAME treatment–induced arterial hypertension, which was linked with reduced spontaneous baroreflex sensitivity and increased renal sympathetic nerve activity, as well as upregulation of AT 1 Rs (Ang II type-1 receptors) in the rostral ventrolateral medulla. Supplementation with nitrate normalized the expression of AT 1 Rs in rostral ventrolateral medulla and reduced sympathetic nerve activity, which was associated with attenuated development of hypertension. In conclusion, chronic dietary nitrate supplementation blunted the development of hypertension via mechanisms that involve reduction of sympathetic outflow.
The maintenance of plasma sodium concentration within a narrow limit is crucial to life. When it differs from normal physiological patterns, several mechanisms are activated in order to restore body fluid homeostasis. Such mechanisms may be vegetative and/or behavioral, and several regions of the central nervous system (CNS) are involved in their triggering. Some of these are responsible for sensory pathways that perceive a disturbance of the body fluid homeostasis and transmit information to other regions. These regions, in turn, initiate adequate adjustments in order to restore homeostasis. The main cardiovascular and autonomic responses to a change in plasma sodium concentration are: i) changes in arterial blood pressure and heart rate; ii) changes in sympathetic activity to the renal system in order to ensure adequate renal sodium excretion/absorption, and iii) the secretion of compounds involved in sodium ion homeostasis (ANP, Ang-II, and ADH, for example). Due to their cardiovascular effects, hypertonic saline solutions have been used to promote resuscitation in hemorrhagic patients, thereby increasing survival rates following trauma. In the present review, we expose and discuss the role of several CNS regions involved in body fluid homeostasis and the effects of acute and chronic hyperosmotic challenges.
Despite being involved in homeostatic control and hydro-electrolyte balance, the contribution of medullary (A1 and A2) noradrenergic neurons to the hypertonic saline infusion (HSI)-induced cardiovascular response after hypotensive hemorrhage (HH) remains to be clarified. Hence, the present study sought to determine the role of noradrenergic neurons in HSI-induced hemodynamic recovery in male Wistar rats (290–320 g) with HH. Medullary catecholaminergic neurons were lesioned by nanoinjection of antidopamine-β-hydroxylase–saporin (0.105 ng·nl−1) into A1, A2, or both (LES A1; LES A2; or LES A1+A2, respectively). Sham rats received nanoinjections of free saporin in the same regions (SHAM A1; SHAM A2; or SHAM A1+A2, respectively). After 15 days, rats were anesthetized and instrumented for cardiovascular recordings. Following 10 min of stabilization, HH was performed by withdrawing arterial blood until mean arterial pressure (MAP) reaches 60 mmHg. Subsequently, HSI was performed (NaCl 3 M; 1.8 ml·kg−1, i.v.). The HH procedure caused hypotension and bradycardia and reduced renal, aortic, and hind limb blood flows (RBF, ABF, and HBF). The HSI restored MAP, heart rate (HR), and RBF to baseline values in the SHAM, LES A1, and LES A2 groups. However, concomitant A1 and A2 lesions impaired this recovery, as demonstrated by the abolishment of MAP, RBF, and ABF responses. Although lesioning of only a group of neurons (A1 or A2) was unable to prevent HSI-induced recovery of cardiovascular parameters after hemorrhage, lesions of both A1 and A2 made this response unfeasible. These findings show that together the A1 and A2 neurons are essential to HSI-induced cardiovascular recovery in hypovolemia. By implication, simultaneous A1 and A2 dysfunctions could impair the efficacy of HSI-induced recovery during hemorrhage.
Intrathecal injection of bombesin (BBS) promoted hypertensive and sympathoexcitatory effects in normotensive (NT) rats. However, the involvement of rostral ventrolateral medulla (RVLM) in these responses is still unclear. In the present study, we investigated: (1) the effects of BBS injected bilaterally into RVLM on cardiorespiratory and sympathetic activity in NT and spontaneously hypertensive rats (SHR); (2) the contribution of RVLM BBS type 1 receptors (BB1) to the maintenance of hypertension in SHR. Urethane-anesthetized rats (1.2 g · kg−1, i.v.) were instrumented to record mean arterial pressure (MAP), diaphragm (DIA) motor, and renal sympathetic nerve activity (RSNA). In NT rats and SHR, BBS (0.3 mM) nanoinjected into RVLM increased MAP (33.9 ± 6.6 and 37.1 ± 4.5 mmHg, respectively; p < 0.05) and RSNA (97.8 ± 12.9 and 84.5 ± 18.1%, respectively; p < 0.05). In SHR, BBS also increased DIA burst amplitude (115.3 ± 22.7%; p < 0.05). BB1 receptors antagonist (BIM-23127; 3 mM) reduced MAP (–19.9 ± 4.4 mmHg; p < 0.05) and RSNA (−17.7 ± 3.8%; p < 0.05) in SHR, but not in NT rats (−2.5 ± 2.8 mmHg; −2.7 ± 5.6%, respectively). These results show that BBS can evoke sympathoexcitatory and pressor responses by activating RVLM BB1 receptors. This pathway might be involved in the maintenance of high levels of arterial blood pressure in SHR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.