The metabolic syndrome (MS), formally known as syndrome X, is a clustering of several risk factors such as obesity, hypertension, insulin resistance, and dislypidemia which could lead to the development of diabetes and cardiovascular diseases (CVD). The frequent changes in the definition and diagnostic criteria of MS are indications of the controversy and the challenges surrounding the understanding of this syndrome among researchers. Obesity and insulin resistance are leading risk factors of MS. Moreover, obesity and hypertension are closely associated to the increase and aggravation of oxidative stress. The recommended treatment of MS frequently involves change of lifestyles to prevent weight gain. MS is not only an important screening tool for the identification of individuals at high risk of CVD and diabetes but also an indicator of suitable treatment. As sympathetic disturbances and oxidative stress are often associated with obesity and hypertension, the present review summarizes the role of sympathetic nervous system and oxidative stress in the MS.
The maintenance of plasma sodium concentration within a narrow limit is crucial to life. When it differs from normal physiological patterns, several mechanisms are activated in order to restore body fluid homeostasis. Such mechanisms may be vegetative and/or behavioral, and several regions of the central nervous system (CNS) are involved in their triggering. Some of these are responsible for sensory pathways that perceive a disturbance of the body fluid homeostasis and transmit information to other regions. These regions, in turn, initiate adequate adjustments in order to restore homeostasis. The main cardiovascular and autonomic responses to a change in plasma sodium concentration are: i) changes in arterial blood pressure and heart rate; ii) changes in sympathetic activity to the renal system in order to ensure adequate renal sodium excretion/absorption, and iii) the secretion of compounds involved in sodium ion homeostasis (ANP, Ang-II, and ADH, for example). Due to their cardiovascular effects, hypertonic saline solutions have been used to promote resuscitation in hemorrhagic patients, thereby increasing survival rates following trauma. In the present review, we expose and discuss the role of several CNS regions involved in body fluid homeostasis and the effects of acute and chronic hyperosmotic challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.