3D Tele-immersion enables participants in remote locations to share, in real-time, an activity. It offers users natural interactivity and immersive experiences, but it challenges current networking solutions. Work in the past has mainly focused on the efficient delivery of image-based 3D videos and on the realistic rendering and reconstruction of geometry-based 3D objects. The contribution of this paper is a complete media pipeline that allows for geometry-based 3D tele-immersion. Unlike previous approaches, that stream videos or video plus depth estimate, our streaming module can transmit the live-reconstructed 3D representations (triangle meshes). Based on a set of comparative experiments, this paper details the architecture and describes a novel component that can efficiently stream geometry in realtime. This component includes both a novel fast local compression algorithm and a rateless packet protection scheme geared towards the requirements imposed by real-time transmission of live-capture mesh geometry. Tests on a large dataset show an encoding and decoding speed-up of over 10 times at similar compression and quality rates, when compared to the high-end MPEG-4 SC3DMC mesh encoder. The implemented rateless code ensures complete packet loss protection of the triangle mesh object and avoids delay introduced by retransmissions. This approach is compared to a streaming mechanism over TCP and outperforms it at packet loss rates over 2% and/or latencies over 9 ms in terms of end-to-end transmission delay. As reported in this paper, the component has been successfully integrated into a larger tele-immersive environment that includes beyond state of the art 3D reconstruction and rendering modules. This resulted in a prototype that can capture, compress transmit and render triangle mesh geometry in real-time over the internet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.