A novel optical Doppler velocimeter using a self-mixing superluminescent diode is proposed and demonstrated. The operation mechanism uses the photodiode on the back-face of a commercial superluminescent diode to detect the Doppler signal from an interferometer. Thanks to the low coherence length of the optical source, the position of the measuring volume can be easily moved into the sample under test by adjusting the reference arm length, thus allowing us to measure the velocity profile of the flowing scatterers even in turbid media. The proposed velocimeter is expected to have several industrial as well as medical applications.
We present what is to our knowledge the first observation of a diffusing-wave-spectroscopy signal recorded in-vivo on the ocular fundus. A modified ophthalmic microscope was developed which can acquire diffusing-wave-spectroscopy signal from the eye fundus. The diffusing-wave-spectroscopy signal was recorded in-vivo on a rabbit eye during transpupillary thermotherapy. Experimental results show the ability of the system to detect motion of the scattering sites in the ocular fundus layers during laser thermal heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.