Aim Climate changes in the past had a deep impact on the evolutionary history of many species and left genetic signatures that are often still detectable today. We investigated the geographical pattern of mitochondrial DNA diversity in the European wild boar (Sus scrofa). Our final aims were to clarify the influence of present and past climatic conditions, infer the geographical position of glacial refugia, and suggest post-glacial spatial dynamics.Location Europe.Methods D-loop sequences were obtained for 763 individuals from Portugal to western Russia. Phylogenetic, multivariate and interpolation methods were used to describe the genetic and geographical patterns. Climatic suitability during the Last Glacial Maximum (LGM) was predicted using MaxEnt. The effect of present and past suitability on the observed patterns of diversity was evaluated by multiple linear regression. ResultsWe confirmed the existence of a ubiquitous mitochondrial clade in Europe (E1), an endemic clade in Italy (E2) and a few East Asian haplotypes (A), presumably introgressed from domestic pigs. No Near Eastern haplotypes were detected. Genetic divergence was not simply related to geographical distance. A clear south-north decreasing gradient of diversity was observed, with maximum levels in putative glacial refugia. Latitudinal variation in climatic conditions during the LGM was shown to be a good predictor of current genetic diversity. Moreover, an unexpected similarity between Iberia and eastern Europe was observed, while central European populations showed a higher affinity to the Italian gene pool. Main conclusionsThe current distribution of mitochondrial genetic diversity was highly influenced by past climatic events, especially those related to the LGM, and is consistent with a major contribution of the Italian peninsula and the Balkans to the post-glacial recolonization of northern areas. More recent processes, such as restocking and extensive hunting, probably acted at rather local scales, without great impact on the global pattern of mitochondrial diversity.
Arthropod vectors are responsible for the transmission of human pathogens worldwide. Several arthropod species are bird ectoparasites, however, no study to date has characterized their microbiota as a whole. We sampled hematophagous ectoparasites that feed on migratory birds and performed 16S rRNA gene metabarcoding to characterize their microbial community. A total of 194 ectoparasites were collected from 115 avian hosts and classified into three groups: a) Hippoboscidae diptera; b) ticks; c) other arthropods. Metabarcoding showed that endosymbionts were the most abundant genera of the microbial community, including Wolbachia for Hippoboscidae diptera, Candidatus Midichloria for ticks, Wolbachia and Arsenophonus for the other arthropod group. Genera including pathogenic species were: Rickettsia, Borrelia, Coxiella, Francisella, Bartonella, Anaplasma. Co-infection with Borrelia-Rickettsia and Anaplasma-Rickettsia was also observed. A global overview of the microbiota of ectoparasites sampled from migratory birds was obtained with the use of 16S rRNA gene metabarcoding. A novel finding is the first identification of Rickettsia in the common swift louse fly, Crataerina pallida. Given their possible interaction with pathogenic viruses and bacteria, the presence of endosymbionts in arthropods merits attention. Finally, molecular characterization of genera, including both pathogenic and symbiont species, plays a pivotal role in the design of targeted molecular diagnostics.
In recent years, the “forest-specialist” pine marten Martes martes has been reported to also occur also in largely fragmented, lowland landscapes of north-western Italy. The colonization of such an apparently unsuitable area provided the opportunity for investigating pine marten ecological requirements and predicting its potential south- and eastwards expansion. We collected available pine marten occurrence data in the flood plain of the River Po (N Italy) and relate them to 11 environmental variables by developing nine Species Distribution Models. To account for inter-model variability we used average ensemble predictions (EP). EP predicted a total of 482 suitable patches (8.31% of the total study area) for the pine marten. The main factors driving pine marten occurrence in the western River Po plain were the distance from watercourses and the distance from woods. EP suggested that the pine marten may further expand in the western lowland, whilst the negligible residual wood cover of large areas in the central and eastern plain makes the habitat unsuitable for the pine marten, except for some riparian corridors and the pine wood patches bordering the Adriatic coast. Based on our results, conservation strategies should seek to preserve remnant forest patches and enhance the functional connectivity provided by riparian corridors.
Genetic traceability has a key role in the product certification, but it is rarely implemented in sheep so far, especially in the fresh meat sector. In this study, the case of the Sambucana sheep is analysed with the aim of developing a genetic system able to certify the origin of its traditional product, the Sambucano lamb, protected by a registered trademark. A set of 14 microsatellite markers was identified as an efficient tool to genetically discriminate the Sambucana sheep from other breeds potentially involved in mislabelling and to allow for an effective allocation test of meat cuts labelled as 'Guaranteed Sambucano lamb'. The paternity test proved to be an additional means to improve the reliability of the control. The traceability system here described is easy to implement in local minor sheep breeds and is recommended in the framework of meat certification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.