We show that any solitonic representation of a conformal (diffeomorphism covariant) net on S 1 has positive energy and construct an uncountable family of mutually inequivalent solitonic representations of any conformal net, using nonsmooth diffeomorphisms. On the loop group nets, we show that these representations induce representations of the subgroup of loops compactly supported in S 1 \ {−1} which do not extend to the whole loop group.In the case of the U(1)-current net, we extend the diffeomorphism covariance to the Sobolev diffeomorphisms D s (S 1 ), s > 2, and show that the positive-energy vacuum representations of Diff + (S 1 ) with integer central charges extend to D s (S 1 ). The solitonic representations constructed above for the U(1)-current net and for Virasoro nets with integral central charge are continuously covariant with respect to the stabilizer subgroup of Diff + (S 1 ) of −1 of the circle.
We show that any positive energy projective unitary representation of $$\mathrm{Diff}_+(S^1)$$ Diff + ( S 1 ) extends to a strongly continuous projective unitary representation of the fractional Sobolev diffeomorphisms $$\mathcal {D}^s(S^1)$$ D s ( S 1 ) for any real $$s>3$$ s > 3 , and in particular to $$C^k$$ C k -diffeomorphisms $$\mathrm{Diff}_+^k(S^1)$$ Diff + k ( S 1 ) with $$k\ge 4$$ k ≥ 4 . A similar result holds for the universal covering groups provided that the representation is assumed to be a direct sum of irreducibles. As an application we show that a conformal net of von Neumann algebras on $$S^1$$ S 1 is covariant with respect to $$\mathcal {D}^s(S^1)$$ D s ( S 1 ) , $$s > 3$$ s > 3 . Moreover every direct sum of irreducible representations of a conformal net is also $$\mathcal {D}^s(S^1)$$ D s ( S 1 ) -covariant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.