Direct numerical simulations have been carried out for a fully developed turbulent channel flow with a smooth upper wall and a lower wall consisting of square bars separated by a rectangular cavity. A wide range of w/k, the cavity width to roughness height ratio, was considered. For w/k > 7, recirculation zones occur immediately upstream and downstream of each element while mean streamlines and spatial distributions of the skin frictional drag indicate that each element is virtually isolated. The maximum form drag occurs at w/k = 7 and coincides with the minimum skin frictional drag. The dependence on w/k of the Clauser roughness function reflects that of the form drag.
In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation, and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done large-eddy simulations of wind plants with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performing this type of simulation. We used the OpenFOAM CFD toolbox to create our solver.The simulated time-averaged power production of the turbines in the plant agrees well with field observations, except with the sixth turbine and beyond in each wind-aligned. The power produced by each of those turbines is overpredicted by 25-40%. A direct comparison between simulated and field data is difficult because we simulate one wind direction with a speed and turbulence intensity characteristic of Lillgrund, but the field observations were taken over a year of varying conditions. The simulation shows the significant 60-70% decrease in the performance of the turbines behind the front row in this plant that has a spacing of 4.3 rotor diameters in this direction. The overall plant efficiency is well predicted. This work shows the importance of using local grid refinement to simultaneously capture the meter-scale details of the turbine wake and the kilometer-scale turbulent atmospheric structures. Although this work illustrates the power of large-eddy simulation in producing a time-accurate solution, it required about one million processor-hours, showing the significant cost of large-eddy simulation.
We present an analysis of the statistical properties and growth of the free on-line encyclopedia Wikipedia. By describing topics by vertices and hyperlinks between them as edges, we can represent this encyclopedia as a directed graph. The topological properties of this graph are in close analogy with those of the World Wide Web, despite the very different growth mechanism. In particular, we measure a scale-invariant distribution of the in and out degree and we are able to reproduce these features by means of a simple statistical model. As a major consequence, Wikipedia growth can be described by local rules such as the preferential attachment mechanism, though users, who are responsible of its evolution, can act globally on the network.
Computations of channel flow with rough walls comprising staggered arrays of cubes having various plan area densities are presented and discussed. The cube height h is 12.5 % of the channel half-depth and Reynolds numbers (u τ h/ν) are typically around 700 -well into the fully rough regime. A direct numerical simulation technique, using an immersed boundary method for the obstacles, was employed with typically 35 million cells. It is shown that the surface drag is predominantly form drag, which is greatest at an area coverage around 15 %. The height variation of the axial pressure force across the obstacles weakens significantly as the area coverage decreases, but is always largest near the top of the obstacles. Mean flow velocity and pressure data allow precise determination of the zero-plane displacement (defined as the height at which the axial surface drag force acts) and this leads to noticeably better fits to the log-law region than can be obtained by using the zero-plane displacement merely as a fitting parameter. There are consequent implications for the value of von Kármán's constant. As the effective roughness of the surface increases, it is also shown that there are significant changes to the structure of the turbulence field around the bottom boundary of the inertial sublayer. In distinct contrast to twodimensional roughness (longitudinal or transverse bars), increasing the area density of this three-dimensional roughness leads to a monotonic decrease in normalized vertical stress around the top of the roughness elements. Normalized turbulence stresses in the outer part of the flows are nonetheless very similar to those in smooth-wall flows.
We study the problem of online team formation. We consider a setting in which people possess different skills and compatibility among potential team members is modeled by a social network. A sequence of tasks arrives in an online fashion, and each task requires a specific set of skills. The goal is to form a new team upon arrival of each task, so that (i) each team possesses all skills required by the task, (ii) each team has small communication overhead, and (iii) the workload of performing the tasks is balanced among people in the fairest possible way.We propose efficient algorithms that address all these requirements: our algorithms form teams that always satisfy the required skills, provide approximation guarantees with respect to team communication overhead, and they are online-competitive with respect to load balancing. Experiments performed on collaboration networks among film actors and scientists, confirm that our algorithms are successful at balancing these conflicting requirements. This is the first paper that simultaneously addresses all these aspects. Previous work has either focused on minimizing coordination for a single task or balancing the workload neglecting coordination costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.