Ecology and evolution unfold in spatially structured communities, where dispersal links dynamics across scales. Because dispersal is multicausal, identifying general drivers remains challenging. In a coordinated distributed experiment spanning organisms from protozoa to vertebrates, we tested whether two fundamental determinants of local dynamics, top-down and bottom-up control, generally explain active dispersal. We show that both factors consistently increased emigration rates and use metacommunity modelling to highlight consequences on local and regional dynamics.
Dispersal evolution impacts the fluxes of individuals and hence, connectivity in metapopulations. Connectivity is therefore decoupled from the structural connectedness of the patches within the spatial network. Because of demographic feedbacks, local selection also drives the evolution of other life history traits. We investigated how different levels of connectedness affect trait evolution in experimental metapopulations of the two‐spotted spider mite. We separated local‐ and metapopulation‐level selection and linked trait divergence to population dynamics. With lower connectedness, an increased starvation resistance and delayed dispersal evolved. Reproductive performance evolved locally by transgenerational plasticity or epigenetic processes. Costs of dispersal, but also changes in local densities and temporal fluctuations herein are found to be putative drivers. In addition to dispersal, demographic traits are able to evolve in response to metapopulation connectedness at both the local and metapopulation level by genetic and/or non‐genetic inheritance. These trait changes impact the persistence of spatially structured populations.
Organisms rarely experience a homogeneous environment. Rather, ecological and evolutionary dynamics unfold in spatially structured and fragmented landscapes, with dispersal as the central process linking these dynamics across spatial scales. Because dispersal is a multi-causal and highly plastic life-history trait, finding general drivers that are of importance across species is challenging but highly relevant for ecological forecasting.We here tested whether two fundamental ecological forces and main determinants of local population dynamics, top-down and bottom-up control, generally explain dispersal in spatially structured communities. In a coordinated distributed experiment spanning a wide range of actively dispersing organisms, from protozoa to vertebrates, we show that bottom-up control, that is resource limitation, consistently increased dispersal. While top-down control, that is predation risk, was an equally important dispersal driver as bottom-up control, its effect depended on prey and predator space use and whether dispersal occurred on land, in water or in the air: species that routinely use more space than their predators showed increased dispersal in response to predation, specifically in aquatic environments. After establishing these general causes of dispersal, we used a metacommunity model to show that bottom-up and top-down control of dispersal has important consequences for local population fluctuations as well as cascading effects on regional metacommunity dynamics. Context-dependent dispersal reduced local population fluctuations and desynchronized dynamics between communities, two effects that increase population and community stability.Our study provides unprecedented insights into the generality of the positive resource dependency of dispersal as well as a robust experimental test of current theory predicting that predator-induced dispersal is modulated by prey and predator space use. Our experimental and theoretical work highlights the critical importance of the multi-causal nature of dispersal as well as its cascading effects on regional community dynamics, which are specifically relevant to ecological forecasting.
Dispersal is a central biological process tightly integrated into life-histories, morphology, physiology and behaviour. Such associations, or syndromes, are anticipated to impact the eco-evolutionary dynamics of spatially structured populations, and cascade into ecosystem processes. As for dispersal on its own, these syndromes are likely neither fixed nor random, but conditional on the experienced environment. We experimentally studied how dispersal propensity varies with individuals' phenotype and local environmental harshness using 15 species ranging from protists to vertebrates. We reveal a general phenotypic dispersal syndrome across studied species, with dispersers being larger, more active and having a marked locomotion-oriented morphology and a strengthening of the link between dispersal and some phenotypic traits with environmental harshness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.