Abstract. The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth system models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems). The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (“LMIP”, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (“LFMIP”, building upon the GLACE-CMIP blueprint).
Euro-Mediterranean Centre on Climate Change coupled climate model (CMCC-CM2) represents the new family of the global coupled climate models developed and used at CMCC. It is based on the atmospheric, land and sea ice components from the Community Earth System Model coupled with the global ocean model Nucleus for European Modeling of the Ocean. This study documents the model components, the coupling strategy, particularly for the oceanic, atmospheric, and sea ice components, and the overall model ability in reproducing the observed mean climate and main patterns of interannual variability. As a first step toward a more comprehensive, process-oriented, validation of the model, this work analyzes a 200-year simulation performed under constant forcing corresponding to present-day climate conditions. In terms of mean climate, the model is able to realistically reproduce the main patterns of temperature, precipitation, and winds. Specifically, we report improvements in the representation of the sea surface temperature with respect to the previous version of the model. In terms of mean atmospheric circulation features, we notice a realistic simulation of upper tropospheric winds and midtroposphere geopotential eddies. The oceanic heat transport and the Atlantic meridional overturning circulation satisfactorily compare with present-day observations and estimates from global ocean reanalyses. The sea ice patterns and associated seasonal variations are realistically reproduced in both hemispheres, with a better skill in winter. Main weaknesses of the simulated climate are related with the precipitation patterns, specifically in the tropical regions with large dry biases over the Amazon basin. Similarly, the seasonal precipitation associated with the monsoons, mostly over Asia, is weaker than observed. The main patterns of interannual variability in terms of dominant empirical orthogonal functions are faithfully reproduced, mostly in the Northern Hemisphere winter. In the tropics the main teleconnection patterns associated with El Niño-Southern Oscillation and with the Indian Ocean Dipole are also in good agreement with observations. CMCC-CM2 represents the base for a family of configurations responding to the different climate needs and applications, including the coupled Climate-Carbon cycle studies through the setup of an Earth System Model (CMCC-ESM 2), a twin set of configurations (CMCC-CM2-HR4 and CMCC-CM2-VHR4), specifically developed for the HighResMIP protocol (Haarsma et al., 2016), and the seasonal prediction system and its CHERCHI ET AL.
Significant predictive skill for the mean winter North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) has been recently reported for a number of different seasonal forecasting systems. These findings are important in exploring the predictability of the natural system, but they are also important from a socioeconomic point of view, since the ability to predict the wintertime atmospheric circulation anomalies over the North Atlantic well ahead in time will have significant benefits for North American and European countries. In contrast to the tropics, for the mid latitudes the predictive skill of many forecasting systems at the seasonal time scale has been shown to be low to moderate. The recent findings are promising in this regard, suggesting that better forecasts are possible, provided that key components of the climate system are initialized realistically and the coupled models are able to simulate adequately the dominant processes and teleconnections associated with low-frequency variability. It is shown that a multisystem approach has unprecedented high predictive skill for the NAO and AO, probably largely due to increasing the ensemble size and partly due to increasing model diversity. Predicting successfully the winter mean NAO does not ensure that the respective climate anomalies are also well predicted. The NAO has a strong impact on Europe and North America, yet it only explains part of the interannual and low-frequency variability over these areas. Here it is shown with a number of different diagnostics that the high predictive skill for the NAO/AO indeed translates to more accurate predictions of temperature, surface pressure, and precipitation in the areas of influence of this teleconnection.
We review recent progress in understanding the role of sea ice, land surface, stratosphere, and aerosols in decadal-scale predictability and discuss the perspectives for improving the predictive capabilities of current Earth system models (ESMs). These constituents have received relatively little attention because their contribution to the slow climatic manifold is controversial in comparison to that of the large heat capacity of the oceans. Furthermore, their initialization as well as their representation in state-of-the-art climate models remains a challenge. Numerous extraoceanic processes that could be active over the decadal range are proposed. Potential predictability associated with the aforementioned, poorly represented, and scarcely observed constituents of the climate system has been primarily inspected through numerical simulations performed under idealized experimental settings. The impact, however, on practical decadal predictions, conducted with realistically initialized full-fledged climate models, is still largely unexploited. Enhancing initial-value predictability through an improved model initialization appears to be a viable option for land surface, sea ice, and, marginally, the stratosphere. Similarly, capturing future aerosol emission storylines might lead to an improved representation of both global and regional short-term climatic changes. In addition to these factors, a key role on the overall predictive ability of ESMs is expected to be played by an accurate representation of processes associated with specific components of the climate system. These act as "signal carriers," transferring across the climatic phase space the information associated with the initial state and boundary forcings, and dynamically bridging different (otherwise unconnected) subsystems. Through this mechanism, Earth system components trigger low-frequency variability modes, thus extending the predictability beyond the seasonal scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.