The overwhelming increase of parcel transports has prompted the need for effective and scalable intelligent logistics systems. In parallel, with the advent of Industry 4.0, a tight integration of Internet of Things technologies and Big Data analytics solution has become necessary to effectively manage industrial processes and to early predict product faults or service disruptions. In the context of good transports, the development of smart monitoring tools is particularly useful for couriers to ensure effective and efficient parcel deliveries. However, the existing predictive maintenance frameworks are not tailored to parcel delivery services. We present REDTag Service, an integrated framework to track and monitor the shipped packages. It relies on a network of IoT-enabled devices, called REDTags, allowing courier employees to easily collect the status of the package at each delivery step. The framework provides back-end functionalities for smart data transmission, management, storage, and analytics. A machine-learning process is included to promptly analyze the features describing event-related data to predict potential breaks of the goods in the packages. The framework provides also a dynamic view on the integrated data tailored to the different stakeholders, as well as on the prediction outcomes, enabling immediate feedback and model improvements. We analyze a realworld dataset including event-related data about parcel transports. To validate the hypothesis that the acquired data contains information relevant to predict the package status (i.e., broken or safe), we empirically analyze the performance of different, scalable classifiers. The experimental results confirm, in good approximation, the predictive power of the models extracted from the event-related features. To the best of the authors' knowledge, this work is the first attempt to address predictive maintenance in smart good transport logistics to predict package breaks from real-world data. INDEX TERMS Big data analytics, Industry 4.0, intelligent transports and logistics, Internet of Things, machine learning, predictive maintenance.
En route to madangamines: A unified strategy has been developed for the enantioselective assembly of functionalized diazatricyclic synthetic precursors of madangamines (see scheme; Bn=benzyl, Boc=tert‐butoxycarbonyl, Mbs=para‐methoxybenzenesulfonyl).
Using simplified model derivatives, the assembly of the macrocyclic rings of madangamines, including the 13-and 14-membered D rings of madangamines C-E, the all-cis-triunsaturated 15-membered D ring of madangamine A, and the (Z,Z)-unsaturated 11-membered E ring common to madangamines A-E, has been studied.The marine sponges belonging to the order Haplosclerida are a source of numerous polycyclic alkaloids with a variety of skeletal structures (manzamines, sarains, nakadomarin A, ingenamines, madangamines, among others), which share a common biogenetic origin from oligomeric macrocycles bearing a partially reduced 3-alkylpyridine moiety. 1 In particular, madangamines (Figure 1) possess an unprecedented diazatricyclic core (rings A-C) and two macrocyclic rings connecting N-7 with C-9 (ring D) and N-1 with C-3 (ring E). 2 Although significant in vitro cytotoxicity against a number of cancer cell lines has been
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.