The overwhelming increase of parcel transports has prompted the need for effective and scalable intelligent logistics systems. In parallel, with the advent of Industry 4.0, a tight integration of Internet of Things technologies and Big Data analytics solution has become necessary to effectively manage industrial processes and to early predict product faults or service disruptions. In the context of good transports, the development of smart monitoring tools is particularly useful for couriers to ensure effective and efficient parcel deliveries. However, the existing predictive maintenance frameworks are not tailored to parcel delivery services. We present REDTag Service, an integrated framework to track and monitor the shipped packages. It relies on a network of IoT-enabled devices, called REDTags, allowing courier employees to easily collect the status of the package at each delivery step. The framework provides back-end functionalities for smart data transmission, management, storage, and analytics. A machine-learning process is included to promptly analyze the features describing event-related data to predict potential breaks of the goods in the packages. The framework provides also a dynamic view on the integrated data tailored to the different stakeholders, as well as on the prediction outcomes, enabling immediate feedback and model improvements. We analyze a realworld dataset including event-related data about parcel transports. To validate the hypothesis that the acquired data contains information relevant to predict the package status (i.e., broken or safe), we empirically analyze the performance of different, scalable classifiers. The experimental results confirm, in good approximation, the predictive power of the models extracted from the event-related features. To the best of the authors' knowledge, this work is the first attempt to address predictive maintenance in smart good transport logistics to predict package breaks from real-world data. INDEX TERMS Big data analytics, Industry 4.0, intelligent transports and logistics, Internet of Things, machine learning, predictive maintenance.
In the last few years, a large number of smart meters have been deployed in buildings to continuously monitor fine-grained energy consumption. Meteorological data deeply impact energy consumption, and an in-depth analysis of collected and correlated data can uncover interesting and actionable insights to improve the overall energy balance of our communities and to enhance people's awareness of energy wasting. To effectively extract meaningful and interpretable insights from large collections of energy measurements and multi-dimensional meteorological data, innovative data science methodologies should be devised. Research frontiers are addressing self-learning approaches, which allow non-experts to exploit machine learning techniques more easily, and algorithmic transparency of models, hence providing actionable, explicit, declarative knowledge representation. This paper presents METeorological Data Analysis for Thermal Energy CHaracterization (METATECH), a data mining engine based on both exploratory and unsupervised data analytics algorithms, devised to build transparent models correlating weather conditions and energy consumption in buildings. METATECH exploits a joint approach coupling cluster analysis and generalized association rules to allow a deeper yet human-readable understanding of how meteorological data impact heating consumption. First, a partitional clustering algorithm is applied to weather conditions. Then, resulting clusters are characterized by means of generalized association rules, which provide a self-learning explainable model of the most interesting correlations between energy consumption and weather conditions at different granularity levels. The experimental evaluation performed on real datasets demonstrates the effectiveness of the proposed approach in automatically extracting interesting knowledge from data, and provide it transparently to domain experts.
The energy performance certificate (EPC) is a document that certifies the average annual energy consumption of a building in standard conditions and allows it to be classified within a so-called energy class. In a period such as this, when greenhouse gas emissions are of considerable importance and where the objective is to improve energy security and reduce energy costs in our cities, energy certification has a key role to play. The proposed work aims to model and characterize residential buildings’ energy efficiency by exploring heterogeneous, geo-referenced data with different spatial and temporal granularity. The paper presents TUCANA (TUrin Certificates ANAlysis), an innovative data mining engine able to cover the whole analytics workflow for the analysis of the energy performance certificates, including cluster analysis and a model generalization step based on a novel spatial constrained K-NN, able to automatically characterize a broad set of buildings distributed across a major city and predict different energy-related features for new unseen buildings. The energy certificates analyzed in this work have been issued by the Piedmont Region (a northwest region of Italy) through open data. The results obtained on a large dataset are displayed in novel, dynamic, and interactive geospatial maps that can be consulted on a web application integrated into the system. The visualization tool provides transparent and human-readable knowledge to various stakeholders, thus supporting the decision-making process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.