Understanding the dynamics of biodiversity, including the spatial distribution of genetic diversity, is critical for predicting responses to environmental changes, as well as for effective conservation measures. This task requires tracking changes in biodiversity at large spatial scales and correlating with species functional traits. We provide three comprehensive resources to understand the determinants for mitochondrial DNA differentiation represented by (a) 15,609 COI sequences and (b) 14 traits belonging to 307 butterfly species occurring in Western‐Central Europe and (c) the first multi‐locus phylogenetic tree of all European butterfly species. By applying phylogenetic regressions we show that mitochondrial DNA spatial differentiation (as measured with GST, G′ST, D and DST) is negatively correlated with species traits determining dispersal capability and colonization ability. Thanks to the high spatial resolution of the COI data, we also provide the first zoogeographic regionalization maps based on intraspecific genetic variation. The overall pattern obtained by averaging the spatial differentiation of all Western‐Central European butterflies shows that the paradigm of long‐term glacial isolation followed by rapid pulses of post‐glacial expansion has been a pervasive phenomenon in European butterflies. The results and the extensive data sets we provide here constitute the basis for genetically‐informed conservation plans for a charismatic group in a continent where flying insects are under alarming decline.
AimWe describe fine‐scale diversity patterns of the entire butterfly fauna occurring on the Tuscan Archipelago. By assessing the traits associated with population diversification, haplotype uniqueness and extinction, we aim to identify the factors determining the origin and maintenance of genetic diversity, and population vulnerability to environmental changes.LocationTuscan Archipelago, Sardinia, Tuscany (Italy) and Corsica (France).MethodsWe built a mtDNA dataset (1,303 COI sequences) for the 52 butterfly species reported in the Archipelago, also including specimens from neighbouring areas, and compiled data on 12 species traits and on the apparent extinction of species from the main islands. We calculated indices that measure genetic differentiation, and using phylogenetic regressions we evaluated the relationships between these indices and species traits. Finally, we inferred which traits are associated with disappearance of species on individual islands using phylogenetic regression.ResultsThe overall spatial pattern of genetic diversity corresponded with the proximity of the areas, but strong contrasts were also identified between geographically close areas. Together with the island endemics, several common and widespread species had a high genetic diversification among islands and mainland. Phylogenetic regressions revealed that smaller‐sized, more specialized species, with a preference for drier regions, displayed greater genetic structure and/or haplotype uniqueness. Species that disappeared from islands had a higher population diversification. Capraia has experienced a notable loss of diversity, which significantly affected species with shorter flight periods.Main conclusionsTuscan island butterflies are characterized by strong genetic contrasts and species differ in their contribution to the overall genetic diversity. By ranking the species for their contribution to genetic diversity and identifying the traits linked to the emergence and maintenance of diversity, we have developed a valuable tool for prioritizing populations as targets for monitoring and conservation action. The dataset constructed also represents a valuable resource for testing biogeographical hypotheses.
Populations inhabiting Mediterranean islands often show contrasting genetic lineages, even on islands that were connected to the mainland during glacial maxima. This pattern is generated by forces acting in historical and contemporary times. Understanding these phenomena requires comparative studies integrating genetic structure, functional traits and dispersal constraints. Using as a model the butterfly species living across the Messina strait (3 km wide) separating Sicily from the Italian Peninsula, we aimed to unravel the mechanisms limiting the dispersal of matrilines and generating genetic differentiation across a narrow sea strait. We analysed the mitochondrial COI gene of 84 butterfly species out of 90 documented in Sicily and compared them with populations from the neighbouring southern Italian Peninsula (1,398 sequences) and from the entire Palaearctic region (8,093 sequences). For each species, we regressed 13 functional traits and 2 ecological constraints to dispersal (winds experienced at the strait and climatic suitability) against genetic differentiation between Sicily and Italian Peninsula to understand the factors limiting dispersal. More than a third of the species showed different haplogroups across the strait and most of them also represented endemic haplogroups for this island. One fifth of Sicilian populations (and 32.3% of endemic lineages) had their closest relatives in distant areas, instead of the neighbouring Italian Peninsula, which suggests high relictuality. Haplotype diversity was significantly explained by the length of the flight period, an intrinsic phenology trait, while genetic differentiation was explained by both intrinsic traits (wingspan and degree of generalism) and contemporary local constraints (winds experienced at the strait and climatic suitability). A relatively narrow sea strait can produce considerable differentiation among butterfly matrilines and this phenomenon showed a largely deterministic fingerprint. Because of unfavourable winds, populations of the less dispersive Sicilian butterflies tended to differentiate into endemic variants or to maintain relict populations. Understanding these phenomena required the integration of DNA sequences, species traits and physical constraints for a large taxon at continental scale. Future studies may reveal if the patterns here shown for mitochondrial DNA are also reflected in the nuclear genome or, alternatively, are the product of limited female dispersal.
1. The Italian biodiversity is among the richest in Europe. In particular, the Italian butterfly fauna includes almost 300 native species, and within the Euro-Mediterranean area is second in species richness only to Turkey. Italy, however, has suffered from the lack of suitable instruments to evaluate the extinction risk of individual butterfly species on the basis of internationally recognised standards.2. We have been working to create the first Italian Red List for butterflies. The achievement of this goal was divided into three actions: (i) the institution of a network of experts on butterfly conservation; (ii) the evaluation of the extinction risk for all Italian butterfly species; (iii) the integration of the baseline information provided by the Italian Red Lists of other taxa crucial for future evaluations of biodiversity trends in Italy.3. Assessments of extinction risks were based on the IUCN Red List Categories and Criteria following their most updated guidelines and were discussed during workshops involving experts from different Italian regions. All native Italian butterflies were included in the evaluation. The whole national population of each species was evaluated, including those on large and small islands.4. Of 289 butterfly species assessed, one has become Regionally Extinct recently. Threatened species are 18 in total, corresponding to 6.3% of the species assessed. The majority of Italian butterfly populations are stable.5. The main threats to Italian butterflies are natural reforestation, as a consequence of rural land abandonment, agricultural intensification and climate change for species living at high altitude.
The sea acts as an effective dispersal barrier for most terrestrial animal species. Narrow sea straits, therefore, often represent areas where species are able to disperse from one land mass to another. In the Mediterranean Sea, the narrowest connecting points between North Africa and Europe are the Strait of Gibraltar and the Strait of Sicily. In the past, climatic oscillations caused changing sea levels and thus influenced the permeability of these sea straits. We analysed the genetic structure of four butterfly species that all occur on both sides of the Strait of Sicily. In all four species, we observed a lack of genetic differentiation between the populations of North Africa and those of Italy. Species distribution models support the strong cohesiveness in that they show a largely continuous glacial distribution over Italy and North Africa. The data obtained reveal that there was a large exchange of individuals between Italy and the eastern Maghreb during the last ice age. This might not only be the case for the species under investigation in the present study, but also might represent a more general pattern for mobile thermophilic western Palearctic species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.