Scalability and foundry compatibility (as for example in conventional silicon based integrated computer processors) in developing quantum technologies are exceptional challenges facing current research. Here we introduce a quantum photonic technology potentially enabling large scale fabrication of semiconductor-based, site-controlled, scalable arrays of electrically driven sources of polarization-entangled photons, with the potential to encode quantum information. The design of the sources is based on quantum dots grown in micron-sized pyramidal recesses along the crystallographic direction (111)B theoretically ensuring high symmetry of the quantum dotsthe condition for actual bright entangled photon emission. A selective electric injection scheme in these non-planar structures allows obtaining a high density of light-emitting diodes, with some producing entangled photon pairs also violating Bell's inequality. Compatibility with semiconductor fabrication technology, good reproducibility and control of the position make these devices attractive candidates for integrated photonic circuits for quantum information processing.To develop quantum technologies, the scientific community is looking into several alternative practical routes, varying as much as superconducting qubits, atoms on-chips, photonic integrated circuits and others 1,2,3,4 . All the explored technologies have to solve the scalability and reproducibility problem if they are to deliver successful real-life applications. In the case of the photonic quantum technologies, scalability requires moving from discrete optical elements to integrated photonic circuits and to on-chip solid-state sources, allowing, for example, thousands of units operating in unisona condition which is very hard to fulfil at the moment.Semiconductor quantum dot technology is fundamentally compatible with modern fab/foundry processes, and on-demand identical, single and entangled photons have been all demonstrated by optical pumping 5,6,7,8,9,10,11,12,13,14 . Nevertheless, while the development of electrically pumped (EP) quantum light sources has advanced in general 15 , the development of a particular resource, EP entangled photon sources, has proven more challenging. After the first report in Nature 16 , the community had to wait several years before a similar result could be obtained by other groups 17 . Importantly, the few devices reported to date, utilized epitaxial selfassembled QD structures, i.e. with no control on the source location, nor on the number of sources in a single device (typically hundreds or more, and not just one or, in the best case scenario, a few): a critical aspect for photonic integration scaling.
A study of highly symmetric site-controlled Pyramidal In 0.25 Ga 0.75 As quantum dots (QDs) is presented. It is discussed that polarization-entangled photons can be also obtained from Pyramidal QDs of different designs from the one already reported in Juska et al. (Nat. Phot. 7, 527, 2013).Moreover, some of the limitations for a higher density of entangled photon emitters are addressed. Among these issues are (1) a remaining small fine-structure splitting and (2) an effective QD charging under non-resonant excitation conditions, which strongly reduce the number of useful biexcitonexciton recombination events. A possible solution of the charging problem is investigated exploiting a dual-wavelength excitation technique, which allows a gradual QD charge tuning from strongly negative to positive and, eventually, efficient detection of entangled photons from QDs, which would be otherwise ineffective under a single-wavelength (non-resonant) excitation.
Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g (2)(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μeV in 15-nm-deep to 7.9 μeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μeV which is close to that from single QDs.
We report a model for metalorganic vapor-phase epitaxy on non-planar substrates, specifically V-grooves and pyramidal recesses, which we apply to the growth of InGaAs nanostructures. This model-based on a set of coupled reaction-diffusion equations, one for each facet in the systemaccounts for the facet-dependence of all kinetic processes (e.g., precursor decomposition, adatom diffusion, and adatom lifetimes) and has been previously applied to account for the temperature-, concentration-, and temporal-dependence of AlGaAs nanostructures on GaAs (111)B surfaces with V-grooves and pyramidal recesses. In the present study, the growth of In 0.12 Ga 0.88 As quantum wires at the bottom of V-grooves is used to determine a set of optimized kinetic parameters. Based on these parameters, we have modeled the growth of In 0.25 Ga 0.75 As nanostructures formed in pyramidal site-controlled quantum-dot systems, successfully producing a qualitative explanation for the temperature-dependence of their optical properties, which have been reported in previous studies. Finally, we present scanning electron and cross-sectional atomic force microscopy images which show previously unreported facetting at the bottom of the pyramidal recesses that allow quantum dot formation. V C 2015 AIP Publishing LLC.[http://dx
The formation of nanostructures during metalorganic vapor-phase epitaxy on patterned (001)/(111)B GaAs substrates is reviewed. The focus of this review is on the seminal experiments that revealed the key kinetic processes during nanostructure formation and the theory and modelling that explained the phenomenology in successively greater detail. Experiments have demonstrated that V-groove quantum wires and pyramidal quantum dots result from self-limiting concentration profiles that develop at the bottom of V-grooves and inverted pyramids, respectively. In the 1950s, long before the practical importance of patterned substrates became evident, the mechanisms of capillarity during the equilibration of non-planar surfaces were identified and characterized. This was followed, from the late 1980s by the identification of growth rate anisotropies (i.e. differential growth rates of crystallographic facets) and precursor decomposition anisotropies, with parallel developments in the fabrication of V-groove quantum wires and pyramidal quantum dots. The modelling of these growth processes began at the scale of facets and culminated in systems of coupled reaction-diffusion equations, one for each crystallographic facet that defines the pattern, which takes account of the decomposition and surface diffusion kinetics of the group-III precursors and the subsequent surface diffusion and incorporation of the group-III atoms released by these precursors. Solutions of the equations with optimized parameters produced concentration profiles that provided a quantitative interpretation of the time-, temperature-, and alloy-concentration dependence of the self-ordering process seen in experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.