Abstract-Detecting the camera model used to shoot a picture enables to solve a wide series of forensic problems, from copyright infringement to ownership attribution. For this reason, the forensic community has developed a set of camera model identification algorithms that exploit characteristic traces left on acquired images by the processing pipelines specific of each camera model. In this paper, we investigate a novel approach to solve camera model identification problem. Specifically, we propose a data-driven algorithm based on convolutional neural networks, which learns features characterizing each camera model directly from the acquired pictures. Results on a wellknown dataset of 18 camera models show that: (i) the proposed method outperforms up-to-date state-of-the-art algorithms on classification of 64x64 color image patches; (ii) features learned by the proposed network generalize to camera models never used for training.
Due to the wide diffusion of JPEG coding standard, the image forensic community has devoted significant attention to the development of double JPEG (DJPEG) compression detectors through the years. The ability of detecting whether an image has been compressed twice provides paramount information toward image authenticity assessment. Given the trend recently gained by convolutional neural networks (CNN) in many computer vision tasks, in this paper we propose to use CNNs for aligned and non-aligned double JPEG compression detection. In particular, we explore the capability of CNNs to capture DJPEG artifacts directly from images. Results show that the proposed CNN-based detectors achieve good performance even with small size images (i.e., 64 Ã\u97 64), outperforming state-of-the-art solutions, especially in the non-aligned case. Besides, good results are also achieved in the commonly-recognized challenging case in which the first quality factor is larger than the second one
Acoustic scene reconstruction is a process that aims to infer characteristics of the environment from acoustic measurements. We investigate the problem of locating planar reflectors in rooms, such as walls and furniture, from signals obtained using distributed microphones. Specifically, localization of multiple two- dimensional (2-D) reflectors is achieved by estimation of the time of arrival (TOA) of reflected signals by analysis of acoustic impulse responses (AIRs). The estimated TOAs are converted into elliptical constraints about the location of the line reflector, which is then localized by combining multiple constraints. When multiple walls are present in the acoustic scene, an ambiguity problem arises, which we show can be addressed using the Hough transform. Additionally, the Hough transform significantly improves the robustness of the estimation for noisy measurements. The proposed approach is evaluated using simulated rooms under a variety of different controlled conditions where the floor and ceiling are perfectly absorbing. Results using AIRs measured in a real environment are also given. Additionally, results showing the robustness to additive noise in the TOA information are presented, with particular reference to the improvement achieved through the use of the Hough transform
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.