The rational design of synthetic regulatory circuits critically hinges on the availability of orthogonal and well-characterized building blocks. Here, we focus on extracytoplasmic function (ECF) σ factors, which are the largest group of alternative σ factors and hold extensive potential as synthetic orthogonal regulators. By assembling multiple ECF σ factors into regulatory cascades of varying length, we benchmark the scalability of the approach, showing that these ‘autonomous timer circuits’ feature a tuneable time delay between inducer addition and target gene activation. The implementation of similar timers in Escherichia coli and Bacillus subtilis shows strikingly convergent circuit behavior, which can be rationalized by a computational model. These findings not only reveal ECF σ factors as powerful building blocks for a rational, multi-layered circuit design, but also suggest that ECF σ factors are universally applicable as orthogonal regulators in a variety of bacterial species.
BackgroundSynthetic biology heavily depends on rapid and simple techniques for DNA engineering, such as Ligase Cycling Reaction (LCR), Gibson assembly and Golden Gate assembly, all of which allow for fast, multi-fragment DNA assembly. A major enhancement of Golden Gate assembly is represented by the Modular Cloning (MoClo) system that allows for simple library propagation and combinatorial construction of genetic circuits from reusable parts. Yet, one limitation of the MoClo system is that all circuits are assembled in low- and medium copy plasmids, while a rapid route to chromosomal integration is lacking. To overcome this bottleneck, here we took advantage of the conditional-replication, integration, and modular (CRIM) plasmids, which can be integrated in single copies into the chromosome of Escherichia coli and related bacteria by site-specific recombination at different phage attachment (att) sites.ResultsBy combining the modularity of the MoClo system with the CRIM plasmids features we created a set of 32 novel CRIMoClo plasmids and benchmarked their suitability for synthetic biology applications. Using CRIMoClo plasmids we assembled and integrated a given genetic circuit into four selected phage attachment sites. Analyzing the behavior of these circuits we found essentially identical expression levels, indicating orthogonality of the loci. Using CRIMoClo plasmids and four different reporter systems, we illustrated a framework that allows for a fast and reliable sequential integration at the four selected att sites. Taking advantage of four resistance cassettes the procedure did not require recombination events between each round of integration. Finally, we assembled and genomically integrated synthetic ECF σ factor/anti-σ switches with high efficiency, showing that the growth defects observed for circuits encoded on medium-copy plasmids were alleviated.ConclusionsThe CRIMoClo system enables the generation of genetic circuits from reusable, MoClo-compatible parts and their integration into 4 orthogonal att sites into the genome of E. coli. Utilizing four different resistance modules the CRIMoClo system allows for easy, fast, and reliable multiple integrations. Moreover, utilizing CRIMoClo plasmids and MoClo reusable parts, we efficiently integrated and alleviated the toxicity of plasmid-borne circuits. Finally, since CRIMoClo framework allows for high flexibility, it is possible to utilize plasmid-borne and chromosomally integrated circuits simultaneously. This increases our ability to permute multiple genetic modules and allows for an easier design of complex synthetic metabolic pathways in E. coli.
Luciferase reporters have become standard genetic tools to monitor gene expression in real time and in high-throughput using microplate readers. Compared to reporter gene assays based on fluorescence proteins, luciferase reporters have a superior signal-to-noise ratio, since they do not suffer from the high autofluorescence background of the bacterial cell. However, at the same time luciferase reporters have the drawback of constant light emission, which leads to undesired cross-talk between neighboring wells on a microplate. To overcome this limitation, we developed a computational method to correct for luminescence bleed-through and to estimate the “true” luminescence activity for each well of a microplate. As the sole input our algorithm uses the signals measured from a calibration plate, in which the light emitted from a single luminescent well serves as an estimate for the “light-spread function”. We show that this light-spread function can be used to deconvolve any other measurement obtained under the same technical conditions. Our analysis demonstrates that the correction preserves low-level signals close to the background and shows that it is universally applicable to different kinds of microplate readers and plate types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.