We combined in situ scanning tunneling microscopy (STM) with the conventional growth characterization methods of atomic force microscopy (AFM) and reflection high-energy electron diffraction (RHEED) to simultaneously assess atomic scale impurities and the larger scale surface morphology of molecular beam epitaxy (MBE) grown homoepitaxial InAs(111)A. By keeping a constant substrate temperature and indium flux while increasing the As 2 flux, we find two differing MBE growth parameter regions for optimized surface roughness on the macroscale and the atomic scale. In particular, we show that a pure stepflow regime with strong suppression of hillock formation can be achieved, even on substrates without intentional offcut. On the other hand, an indium adatom deficient surface with only a few remaining defects can be observed for a high density of hillocks. We identify the main remaining point defect on the latter surface by comparison to STM simulations. Furthermore, we provide a method for extracting root-mean-square surface roughness values and discuss their use for surface quality optimization by comparison to scale dependent, technologically relevant surface metrics. Finally, we map the separately optimized regions of the growth parameter space as a guide for future device engineering involving epitaxial InAs(111)A growth.
We combined in-situ scanning tunneling microscopy (STM) with the conventional growth characterization methods of atomic force microscopy (AFM) and reflection high energy electron diffraction (RHEED) to simultaneously assess atomic scale impurities and the larger scale surface morphology of molecular beam epitaxy (MBE) grown homoepitaxial InAs(111)A. By keeping a constant substrate temperature and indium flux while increasing the As 2 flux, we find two differing MBE growth parameter regions for optimized surface roughness on the macro-and atomic scale. In particular, we show that a pure step-flow regime with strong suppression of hillock formation can be achieved, even on substrates without intentional offcut. On the other hand, an indium
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.