Background-Cell replacement therapy with stem cells able to differentiate into cardiomyocytes has been discussed as a method for remodeling damaged myocardium. A physiological or pathophysiological situation in which this phenomenon might be relevant is not known. We studied the origin of cardiomyocytes in myocardial biopsies of male patients that had undergone sex-mismatched cardiac transplantation to determine whether cells containing a Y chromosome (and therefore being of recipient origin) are able to differentiate into cardiomyocytes. Methods and Results-Myocardial biopsies (nϭ21) were obtained from the right ventricles of male patients (nϭ13) who had undergone sex-mismatched heart transplantation. Tissue from 1 nontransplanted male and myocardial biopsies from sex-matched heart-transplanted patients served as controls. Cells from donor and recipient origins were identified by fluorescence in situ hybridization with the use of specific probes for X and Y chromosomes on paraffin sections of the biopsies. Cell types were identified by using immunostaining procedures on the same tissue sections. Cardiomyocytes of recipient origin were detected in 8 of 13 male recipients of female hearts. They were connected by gap junctions with adjacent myocytes. Of the cardiomyocyte nuclei, 0.16Ϯ0.04% (meanϮSEM, median 0.09%) contained the Y-chromosomal marker. There was no detectable correlation with the extent or number of rejection episodes, time of transplantation, or medical treatment regimen. Conclusions-These results show that regeneration by cells of noncardiac origin (differentiated into cardiomyocytes and physiologically linked to neighboring myocytes) can be detected even in small myocardial biopsies. This may lead to new diagnostic and therapeutic strategies in the treatment of myocardial infarction, inflammatory heart disease, and/or heart failure.
Meningiomas are tumors that arise from the coverings of the brain or spinal cord. 5% of the cases turn into malignant forms with aggressive clinical behavior and increased risk of tumor recurrence. One hundred and five patients with meningiomas were operated by open surgery. To investigate predictors of meningioma recurrence in total 124 samples of 105 patients were investigated by iFISH. Dual-probe hybridization was performed to access chromosomal alterations of chromosomes 1p-, 9p- and 22q. Additionally, methylation of TIMP3 and p16 was analyzed with MS-PCR. Of the 105 investigated tumors 59.1% (62/105) were WHO grade I, 33.3% (35/105) were WHO grade II and 7.7% (8/105) were anaplastic meningiomas (grade III), respectively. The histopathological data correlates with the recurrence rate of the investigated meningiomas. Hypermethylation of TIMP3 was detected in 13.3% of all meningiomas: 10.9% in WHO grade I meningiomas, 25.0% in grade II and 14.3% in grade III meningiomas, respectively. No correlation of TIMP3 hypermethylation with tumor recurrence or WHO grade (p = 0.2) was observed. Interestingly, deletion of 1p36 emerged as a significant predictor of shorter overall survival (log rank test, p<0.001), whereas TIMP3 promoter methylation had no significant effect on overall survival (log rank test, p = 0.799). The results of the current study support the finding that the deletion of chromosome 1p is an independent marker of meningioma recurrence and progression (p = 0.0097). Therefore the measurement of genetic aberrations in meningiomas allows in a combined histological approach a more precise assessment of the prognosis of meningiomas than histopathology alone.
The activating E17K mutation in the AKT1 gene has been detected in several tumor entities. Currently several clinical studies with specific AKT1 inhibitors are under way. To determine whether AKT1 mutations are involved in human tumors of the nervous system, we examined a series of 1,437 tumors including 391 primary intracranial brain tumors and 1,046 tumors of the coverings of the central and peripheral nervous system. AKT1E17K mutations were exclusively seen in meningiomas and occurred in 65 of 958 of these tumors. A strong preponderance was seen in the variant of meningothelial meningioma WHO grade I of basal and spinal localization. In contrast, AKT1E17K mutations were rare in WHO grade II and absent in WHO grade III meningiomas. In order to more effectively detect this mutation, we tested for immunohistochemical markers associated with this alteration. We observed strong up-regulation of SFRP1 expression in all meningiomas with AKT1E17K mutation and in HEK293 cells after transfection with mutant AKT1E17K, but not in meningiomas and HEK293 cells lacking this mutation.
DNA methylation patterns delineate clinically relevant subgroups of meningioma. We previously established the six meningioma methylation classes (MC) benign 1-3, intermediate A and B, and malignant. Here, we set out to identify subgroupspecific mutational patterns and gene regulation. Whole genome sequencing was performed on 62 samples across all MCs and WHO grades from 62 patients with matched blood control, including 40 sporadic meningiomas and 22 meningiomas arising after radiation (Mrad). RNA sequencing was added for 18 of these cases and chromatin-immunoprecipitation for histone H3 lysine 27 acetylation (H3K27ac) followed by sequencing (ChIP-seq) for 16 samples. Besides the known mutations in meningioma, structural variants were found as the mechanism of NF2 inactivation in a small subset (5%) of sporadic meningiomas, similar to previous reports for Mrad. Aberrations of DMD were found to be enriched in MCs with NF2 mutations, and DMD was among the most differentially upregulated genes in NF2 mutant compared to NF2 wild-type cases. The mutational signature AC3, which has been associated with defects in homologous recombination repair (HRR), was detected in both sporadic meningioma and Mrad, but widely distributed across the genome in sporadic cases and enriched near genomic breakpoints in Mrad. Compared to the other MCs, the number of single nucleotide variants matching the AC3 pattern was significantly higher in the malignant MC, which also exhibited higher genomic instability, determined by the numbers of both large segments affected by copy number alterations and breakpoints between large segments. ChIP-seq analysis for H3K27ac revealed a specific activation of genes regulated by the transcription factor FOXM1 in the malignant MC. This analysis also revealed a super enhancer near the HOXD gene cluster in this MC, which, together with general upregulation of HOX genes in the malignant MC, indicates a role of HOX genes in meningioma aggressiveness. This data elucidates the biological mechanisms rendering different epigenetic subgroups of meningiomas, and suggests leveraging HRR as a novel therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.