Dynamical phenomena such as oscillations and instability in railway power systems have caused concern in the experts' community the recent years. On several occasions, modern advanced electrical rail vehicles have been the source of low frequency power oscillations leading to an unstable power system due to lack of damping, and as a consequence operational problems. A method to study these phenomena is needed. Well known linear techniques based on small-signal analysis provide valuable information about the inherent characteristics of even non-linear single-phase power systems. This paper describes how a traction power system and its dynamical railway-related components are modelled in a commercially available power system analysis software and studied by linear analysis such as eigenvalues, participation factors and parameter sensitivities. This is used to gain knowledge about the interaction between the rail vehicles and the electrical infrastructure. Linear analysis is found to be a powerful tool in this respect provided that adequate models of the relevant components can be established in RMS mode. The results clearly indicate poor interaction.
Dynamical phenomena, such as oscillations and instability in railway power systems, have become of growing concern in the experts' community in recent years. On several occasions, modern advanced electric rail vehicles have been the source for low-frequency power oscillations leading to an unstable power system due to the lack of damping, and as a consequence of operating problems. A method to study these phenomena is needed. Well known linear techniques based on small-signal analysis provide valuable information about the inherent characteristics of even non-linear single-phase power systems. This paper describes how a railway power system and its dynamical railway-related components are modelled in a commercially available power system analysis software and studied by linear analysis such as eigenvalues, participation factors and parameter sensitivities. This is used to gain knowledge about the interaction between the rail vehicles and the electric infrastructure. Linear analysis is found to be a powerful tool in this respect, provided that adequate models of the relevant components can be established in the RMS mode. The results reflect the experienced poor interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.