Films of LiMn 2 O 4 prepared by pulsed laser ablation deposition are typically lithium deficient when grown at background pressures ranging between 10 −4 and 20 Pa. The deficiency of light atomic species such as lithium in LiMn 2 O 4 thin films occurs as a result of the different behavior of the species during plume expansion and the deposition of the film at elevated deposition temperatures. The plasma plume evolution in vacuum and 20 Pa oxygen pressure are studied using two spectroscopic techniques: emission spectroscopy and plume imaging. Higher velocities and a wider spatial distribution of lithium atoms are observed in vacuum when compared with manganese and oxygen species. Plume species are slowed down due to collisions with gas molecules when ablating LiMn 2 O 4 in an oxygen atmosphere. As a result, a strong deceleration of the plasma front occurs, and the effect is more pronounced for the light species, e.g., Li. Comparing the spatial manganese and lithium distribution within the plasma, the lithium species are again scattered into a wider angular range. These similar spatial distributions of Li atoms detected in the pressure range between 10 −4 and 20 Pa suggest that it is not possible to achieve a congruent lithium transfer to a growing film if the target contains heavier elements besides lithium. The general implications for the ablation of materials containing a combination of light and heavy elements are that as-grown films are inherently deficient with respect to the content of the light elements. If the mass ratio between the light and the heavy elements is not too different, is should be possible to find a set of deposition parameters which will result in the growth of a film with the desired composition.
Following the recent success of monolithically integrated Perovskite/Si tandem solar cells, great interest has been raised in searching for alternative wide bandgap top-cell materials with prospects of a fully earthabundant, stable and efficient tandem solar cell. Thin film chalcogenides (TFCs) such as the Cu 2 ZnSnS 4 (CZTS) could be suitable top-cell materials. However, TFCs have the disadvantage that generally at least one high temperature step (> 500 • C) is needed during the synthesis, which could contaminate the Si bottom cell. Here, we systematically investigate the monolithic integration of CZTS on a Si bottom solar cell. A thermally resilient double-sided Tunnel Oxide Passivated Contact (TOPCon) structure is used as bottom cell. A thin (< 25 nm) TiN layer between the top and bottom cells, doubles as diffusion barrier and recombination layer. We show that TiN successfully mitigates in-diffusion of CZTS elements into the c-Si bulk during the high temperature sulfurization process, and find no evidence of electrically active deep Si bulk defects in samples protected by just 10 nm TiN. Post-process minority carrier lifetime in Si exceeded 1.5 ms, i.e., a promising implied open-circuit voltage (i-V oc) of 715 mV after the high temperature sulfurization. Based on these results, we demonstrate a first proof-of-concept two-terminal CZTS/Si tandem device with an efficiency of 1.1% and a V oc of 900 mV. A general implication of this study is that the growth of complex semiconductors on Si using high temperature steps is technically feasible, and can potentially lead to efficient monolithically integrated two-terminal tandem solar cells.
We report on the fabrication of a 5.2% efficiency Cu 2 ZnSnS 4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed. At the optimal laser fluence, amorphous CZTS precursors with optimal stoichiometry for solar cells are deposited from a single target. Such precursors do not result in detectable segregation of secondary phases after the subsequent annealing step. In the analysis of the solar cell device, we focus on the effects of the finite thickness of the absorber layer. Depletion region width, carrier diffusion length, and optical losses due to incomplete light absorption and back contact reflection are quantified. We conclude that material-and junction quality is comparable to that of thicker state-of-the-art CZTS devices, even though the efficiency is lower due to optical losses.
Pulsed laser deposition (PLD) can be considered a powerful method for the growth of two-dimensional (2D) transition-metal dichalcogenides (TMDs) into van der Waals heterostructures. However, despite significant progress, the defects in 2D TMDs grown by PLD remain largely unknown and yet to be explored. Here, we combine atomic resolution images and first-principles calculations to reveal the atomic structure of defects, grains, and grain boundaries in mono- and bilayer MoS2 grown by PLD. We find that sulfur vacancies and MoS antisites are the predominant point defects in 2D MoS2. We predict that the aforementioned point defects are thermodynamically favorable under a Mo-rich/S-poor environment. The MoS2 monolayers are polycrystalline and feature nanometer size grains connected by a high density of grain boundaries. In particular, the coalescence of nanometer grains results in the formation of 180° mirror twin boundaries consisting of distinct 4- and 8-membered rings. We show that PLD synthesis of bilayer MoS2 results in various structural symmetries, including AA′ and AB, but also turbostratic with characteristic moiré patterns. Moreover, we report on the experimental demonstration of an electron beam-driven transition between the AB and AA′ stacking orientations in bilayer MoS2. These results provide a detailed insight into the atomic structure of monolayer MoS2 and the role of the grain boundaries on the growth of bilayer MoS2, which has importance for future applications in optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.