Cone beam computed tomography (CBCT) is a modern imaging technique that uses X-rays to investigate the structures of the dento-maxillary apparatus and obtain detailed images of those structures. The aim of this study was to determine a functional mathematical model able to evaluate the elastic force intensity on each bracket and tube type element and the ways in which those components act on the orthodontic system being used. To analyze a real orthodontic system, we studied the case of a 13-year-old female patient. To transfer geometric information from tomographic images, we used the InVesalius software. This software can generate three-dimensional reconstructions based on sequences and files in the DICOM format and was purchased from CBCT equipment. We analyzed and processed the geometries of the converted tissues in InVesalius using the Geomagic software. After using the Geomagic software, we exported the resulting model to the SolidWorks software used in computer-aided design. In this software, the model is transformed into a virtual solid. After making the geometric model, we analyzed the model using the Ansys Workbench software, which incorporates finite element analysis techniques. Following the simulations, we obtained result maps, which showed the complete mechanical behavior of the analyzed structures.
5-hydroxytryptamine (5-HT) dually influences skeleton status through positive, indirect central effect and negative, direct, gut-associated impact. Circulating form is usually tested via venous blood sample. A limited number of clinical studies are published on this specific topic. We introduce a cross-sectional study on menopausal women with normal (N=29) and low bone mineral density (N=32) based on lumbar Dual-Energy X-Ray Absorptiometry (DXA) to whom serum serotonin was assessed and found no correlation with bone loss. This aspect confirms conflicting published data regarding the relationship between circulating levels and fracture risk assessment.
The finite element method (FEM) is a computational method that can solve all biomechanical problems, including the field of orthodontics. The purpose of this virtual experimental study is to determine the behavior of a real orthodontic system subjected to different systems of loads. To analyze the real orthodontic system, we studied the case of a 21-year-old female patient. We used the InVesalius program, which can transform a set of DICOM-type images taken from cone beam computed tomography (CBCT) into three-dimensional structures. These structures were edited, modified, completed, and analyzed from a geometric point of view with the help of the Geomagic software. The final result of these operations must be a three-dimensional model made up of perfectly closed surfaces so that they can be transformed into virtual solids. The model consisting of perfectly closed surfaces is loaded into computer-aided design (CAD) programs. Bracket and tube components, as well as orthodontic wires, can be added to these models, similar to the analyzed patient’s tissues. When the model is complete and geometrically correct, it is exported to a program that uses FEM, such as Ansys Workbench. The simulation was performed for the forces of 0.5, 0.6, 0.7, 0.8, 0.9, and 1 N. The intention was to determine the behavior of the entire orthodontic system for these force values. After running the simulations, result maps were obtained that were composed of displacement, strain, and stress diagrams. It was also found that, in addition to the known rigidity, the orthodontic system has some elasticity due to the orthodontic wires, as well as the periodontal ligaments. Thus, a virtual analysis study can be carried out starting from a real patient with pre-treatment CBCT images and the virtual models of the bracket and tube elements and of the orthodontic wires.
Optical coherence tomography (OCT) is a modern imaging method with applicability in orthodontics. In recent years, there has been an increasing trend in the use of ceramic brackets. The aim of the present study was to investigate the effects of bonding metallic and ceramic brackets on tooth enamel, using optical coherence tomography. For this purpose, 20 permanent teeth we bonded and were subsequently debonded using a side cutter or anterior bracket removal pliers. Using the OCT technique, the enamel, the amount of adhesive remaining and the bracket fragments remaining on the tooth surface were analyzed following the debonding procedure. It was demonstrated that enamel cracks were present only in the samples bonded with ceramic brackets. At the same time, it was noted that the type of pliers did not affect the incidence and extent of damage to the enamel. The type of debonding technique (using the side cutter or the anterior removal pliers) used did not markedly affect the amount of adhesive remaining on the teeth. Thus, as demonstrated herein, by analyzing the enamel structure through the use of OCT, the quality of the processes and the materials used for manufacturing brackets can be increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.