The complex flow field of gas turbine lean combustors is meant to reduce NOx emissions and maintain a stable flame by controlling the local temperature and promoting high turbulent mixing. Still, this may produce large flow and temperature unsteady distortions capable of disrupting the aerodynamics and heat transfer of the first high-pressure-turbine cooled nozzle. Therefore, the interaction between the combustion chamber and the turbine nozzle is analyzed first with the help of scale-resolving simulations that notably also include a realistic turbine nozzle cooling system. To determine the nature and severity of the interaction, and the risks associated to performing decoupled simulation, the results of the coupled computer simulation are analyzed and compared with those of decoupled simulations. In this case, the combustor is computed by replacing the turbine nozzle with a discharge convergent with the same throat area, and the conditions at the interface plane are used as inlet boundary conditions for a conventional RANS of the nozzle. The analyses of the coupled and decoupled simulation reveal that the combustion chamber is weakly affected by the presence of the nozzle, whereas the two thermal fields of the nozzle surface differ considerably, as well as the disruption of the film cooling by the incoming flow distortions.
Combustion–turbine interaction phenomena are attracting ever-growing interest in recent years. As a matter of fact, the strong unsteady and three-dimensional flow field that characterizes the combustor is usually conserved up to the first-stage nozzle, possibly affecting its design and performance in terms of aerodynamics and the effectiveness of the cooling system as well. Such conditions are also exacerbated by the employment of lean-burn combustors, where high turbulence levels are required for the flame stabilization, resulting in even greater temperature and velocity distortions at the inlet of the first-stage nozzle. Even if it has been proven by several past studies that the best way of studying the combustor–turbine interaction is simulating the two components together, performing coupled simulations is still challenging from a numerical point of view, especially in an industrial context. For this reason, the application and generation of the most representative and reliable boundary conditions possible at the inlet of the S1N have assumed an increased importance in order to study the two components separately by performing decoupled simulations. In this context, the purpose of the present work is to compare fully integrated combustor–stator SBES simulations to isolated stator ones. To perform the stator-only calculations, the fully unsteady inlet conditions of the stator have been recorded at the interface plane between the two components in the integrated SBES simulation and then they have been reconstructed by applying the proper orthogonal decomposition (POD) technique. The SBES simulations of the isolated stator have been so performed with the aim of determining whether the flow field obtained is comparable with the one of the integrated simulation, thus allowing more realistic results to be obtained rather than imposing time-averaged 2D maps, as per standard design practice.
The employment of lean-premix combustors in modern gas turbines allows to reduce NOx emissions by controlling the flame temperature at the expense of highly unsteady and strongly non-uniform flow fields which are necessary to stabilize the flame. This highly complex swirled flow field characterized by evident temperature distortions alters the aerodynamics and heat transfer in the first high pressure turbine stator with potential detrimental consequences on engine life and efficiency. From a numerical point of view, the mutual combustor-turbine interaction has been studied by using standard turbulence modeling approaches, as commonly employed during the design phase, even if more advanced scale-resolving methods have been proven more reliable and benchmarked against various experimental findings. From the experimental perspective, film-cooling adiabatic effectiveness and heat transfer coefficient (HTC) measurements on the external surface of the nozzle guide vanes, in the presence of representative combustor outflow characteristics, are not common since the relevant temperature distortions that are present make such kind of measurements really challenging to perform. For this reason, very limited assessment of such approaches regarding this aspect is available in literature. In this study, an experimental test case with a combustor simulator and a nozzle cascade, where both adiabatic effectiveness and HTC measurements have been carried out, is investigated by carrying out a systematic computational study, through RANS calculations of the combustor-cascade integrated domain. The film cooling system performance has been predicted by meshing the whole vane internal cooling system, while the heat transfer coefficient is calculated using the conventional two-point method, normally adopted for heat transfer calculations in gas turbines. The comparison between numerical predictions and experimental results was exploited to assess the capability of traditional modeling approaches in the characterization of both adiabatic effectiveness and heat transfer coefficient. This evaluation represents an effective means to assess if conventional/industrial approaches can be reliably used, when representative and highly unsteady combustor outflows are considered, or advanced and more time-consuming methods shall be adopted.
Future energy and transport scenarios will still rely on gas turbines for energy conversion and propulsion. Gas turbines will play a major role in energy transition and therefore gas turbine performance should be improved, and their pollutant emissions decreased. Consequently, designers must have accurate performance and emission prediction tools. Usually, pollutant emission prediction is limited to the combustion chamber as the composition at its outlet is considered to be “chemically frozen”. However, this assumption is not necessarily valid, especially with the increasing turbine inlet temperatures and operating pressures that benefit engine performance. In this work, Computational Fluid Dynamics (CFD) and Chemical Reactor Network (CRN) simulations were performed to analyse the progress of NOx and CO species through the high-pressure turbine stator. Simulations considering turbulence-chemistry interaction were performed and compared with the finite-rate chemistry approach. The results show that progression of some relevant reactions continues to take place within the turbine stator. For an estimated cruise condition, both NO and CO concentrations are predicted to increase along the stator, while for the take-off condition, NO increases and CO decreases within the stator vanes. Reaction rates and concentrations are correlated with the flow structure for the cruise condition, especially in the near-wall flow field and the blade wakes. However, at the higher operating pressure and temperature encountered during take-off, reactions seem to be dependent on the residence time rather than on the flow structures. The inclusion of turbulence-chemistry interaction significantly changes the results, while heat transfer on the blade walls is shown to have minor effects.
Nowadays, the ever-increasing world electricity generation by renewable energy sources has brought about changes in conventional power plants, especially in those ones where large steam turbines work, which were widely used to meet the world’s energy needs by operating mostly at fixed conditions. Now, instead, they have to be capable to operate with greater flexibility, including rapid load changes and quick starts as well, in order to make the most of the renewable resources while guaranteeing the coverage of any shortcomings of the latter with traditional fossil fuel systems. Such service conditions are particularly challenging for the exhaust hoods, which have a great influence on the overall turbine performance, especially at off-design conditions. In fact, the complex and high rotational 3D flow generated within the diffuser and the exhaust hood outer casing can cause an increase in aerodynamic losses along with the detriment of the hood recovery performance. For these reasons, an optimized design and adequate prediction of the exhaust hood performance under all the machine operating conditions is mandatory. Since it has been widely proven that the exhaust hood flow strongly interacts with the turbine rear stage, the necessity to model this as well into a CFD modeling becomes crucial, requiring a remarkable computational effort, especially for full transient simulations. Even if adopting simplified approaches to model the last stage and exhaust hood interfaces, such as the so-called Frozen Rotor and the Mixing Plane ones, helps to keep the computational cost low, it can be not for an exhaust hood optimization process, which requires a significant number of CFD simulations to identify the most performing geometry configuration. For these reasons, a simplified model of the exhaust hood must be adopted to analyse all the possible design variants within a feasible time. The purpose of this work is to present a strategy for the exhaust hood design based on the definition of a simplified CFD model. A parametric model has been developed as a function of key geometrical parameters of both the exhaust hood and the diffuser, taking into account the strong fluid-dynamic coupling between these components. A periodic approximation has been introduced to model the exhaust hood domain, thus allowing to augment the number of the geometrical parameters of the DOE, while keeping the computational effort low. A response surface has been achieved as a function of the key geometrical parameters, therefore an optimization method has allowed identifying the best performing configuration. A 3D model of the optimized periodic geometry has been then generated to assess the effectiveness of the procedure here presented. Finally, the presented procedure has been applied in several off-design operating conditions, in order to find out an optimal geometry for each operating point, evaluating how much they differ from that one got for the design point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.