Herpes simplex virus type 1 glycoprotein M (gM) is a type III membrane protein conserved throughout the family Herpesviridae. However, despite this conservation, gM is classed as a non-essential protein in most alphaherpesviruses. Previous data have suggested that gM is involved in secondary envelopment, although how gM functions in this process is unknown. Using transfection-based assays, we have previously shown that gM is able to mediate the internalization and subcellular targeting of other viral envelope proteins, suggesting a possible role for gM in localizing herpesvirus envelope proteins to sites of secondary envelopment. To investigate the role of gM in infected cells, we have now analysed viral envelope protein localization and virion incorporation in cells infected with a gM-deletion virus or its revertant. In the absence of gM expression, we observed a substantial inhibition of glycoprotein H-L (gH-L) internalization from the surface of infected cells. Although deletion of gM does not affect expression of gH and gL, virions assembled in the absence of gM demonstrated significantly reduced levels of gH-L, correlating with defects of the gM-negative virus in entry and cell-to-cell spread. These data suggest an important role of gM in mediating the specific internalization and efficient targeting of gH-L to sites of secondary envelopment in infected cells.
The injection of recombinant erythropoietin (Epo) is now widely used for long-term treatment of anemia associated with chronic renal failure, cancer, and human immunodeficiency virus infections. The ability to deliver this hormone by gene therapy rather than by repeated injections could provide substantial clinical and economic benefits. As a preliminary approach, we investigated in rats the expression and biological effects of transplanting autologous vascular smooth muscle cells transduced with a retroviral vector encoding rat Epo cDNA. Vector-derived Epo secretion caused increases in reticulocytes, with peak levels of 7.8-9.6% around day 10 after implantation. The initial elevation in reticulocytes was followed by clinically significant increases in hematocrit and hemoglobin for up to 11 weeks. Ten control and treated animals showed mean hematocrits of 44.9 ± 0.4% and 58.7 -3.1%, respectively (P < 0.001), and hemoglobin values of 15.6 ± 0.1 g/dl and 19.8 ± 0.9 g/dl, respectively (P < 0.001). There were no significant differences between control and treated animals in the number of white blood cells and platelets. Kidney and to a lesser extent liver are specific organs that synthesize Epo in response to tissue oxygenation. In the treated animals, endogenous Epo mRNA was largely down regulated in kidney and absent from liver. These results indicate that vascular smooth muscle cells can be genetically modified to provide treatment of anemias due to Epo deficiency and suggest that this cell type may be targeted in the treatment of other diseases requiring systemic therapeutic protein delivery.Erythropoietin (Epo) is a 30-kDa glycoprotein hormone that serves as the primary regulator of red cell production in mammals (1, 2). The therapeutic potential for Epo in the treatment of anemia associated with renal failure was demonstrated initially by its administration to anemic uremic rats and sheep (3, 4). The availability of recombinant human Epo provided a major advance in the treatment of anemia in renal failure patients receiving dialysis (5). The attendant dangers of transfusion therapy were eliminated and the quality of life of these patients was significantly improved. This treatment, given two or three times weekly, raises hematocrit and hemoglobin levels and improves cardiovascular status (2, 6).Adenoviral vectors have been used to achieve in vivo Epo gene transfer (7,8). Studies of Epo gene transfer using transplantation of transduced cells have included myoblasts in mice (9, 10) and smooth muscle cells in rats (11). Vascular smooth muscle cells provide an attractive target tissue for gene therapy and have been studied by several investigators (12-17). These cells are easily obtained and cultured and can be efficiently infected with replication-defective retroviral vectors and returned to the donor by seeding in natural or synthetic blood vessels (11)(12)(13)(14)18 Cell Culture, Transduction, and Transplantation. Ecotropic PE501 and amphotropic PA317 retrovirus packaging cell lines (20, 23), NIH 3T3 th...
Prosthetic vascular grafts containing retrovirally transduced autologous vascular smooth muscle cells were studied as a model for introduction of human genes into baboons. Retroviral vectors encoding beta-galactosidase (beta-Gal) (LNPoZ) or human purine nucleoside phosphorylase (LPNSN-2), a control gene, were used for ex vivo transduction of autologous baboon smooth muscle cells obtained from vein biopsies. Transduced cells were placed into a collagen solution and seeded into the interstices of polytetrafluoroethylene vascular grafts. Endothelial cells were then seeded onto the luminal surface of the grafts to reduce thrombus formation. One LNPoZ-seeded graft and one LPNSN-2-seeded control graft were implanted bilaterally into the aorto-iliac circulation of each of 4 animals. All grafts remained patent until they were removed after 3-5 weeks and examined histochemically for vector-expressing cells. All histological cross-sections from the beta-Gal vector seeded grafts contained cells staining blue with the X-Gal chromogen. For the four grafts, the mean fraction of LNPoZ expressing cells was 10%, with a range of 2-20%, while no sections from the control grafts contained stainable cells. Smooth muscle cells expressing the reporter gene were localized within the graft wall but not in the newly forming intima or outer capsule of fibrous tissue. Implantation of transduced cells within this type of vascular graft may provide a useful approach for long-term local and systemic gene therapy.
The biologic effects of endotoxin are attributed to the release of several cytokines, including interleukin-1, interleukin-6, tumor necrosis factor, and the colony-stimulating factors. To investigate the mechanism of endotoxin-induced neutrophilia in dogs, several cell lines known to proliferate selectively in response to recombinant human colony-stimulating factors were examined to determine their responses to recombinant canine granulocyte colony-stimulating factor (rcG-CSF) or recombinant canine granulocyte-macrophage colony-stimulating factor (rcGM-CSF). The murine cell line NFS-60 was found to respond well to rcG-CSF and the human cell line TALL-101 to rcGM-CSF, and these responses were neutralized by antibodies to these recombinant proteins. These bioassays were then used to determine G-CSF and GM-CSF levels in dogs after intravenous endotoxin administration. G-CSF levels increased by 2 h, peaked at 4 h, and had not returned to normal by 24 h after endotoxin. In contrast, GM-CSF was not detectible before or after endotoxin administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.