Abstract. We investigate theoretically the possibility to observe dynamical mode locking, in the form of Shapiro steps, when a time-periodic potential or force modulation is applied to a two-dimensional (2D) lattice of colloidal particles that are dragged by an external force over an optically generated periodic potential. Here we present realistic molecular dynamics simulations of a 2D experimental setup, where the colloid sliding is realized through the motion of soliton lines between locally commensurate patches or domains, and where the Shapiro steps are predicted and analyzed. Interestingly, the jump between one step and the next is seen to correspond to a fixed number of colloids jumping from one patch to the next, across the soliton line boundary, during each AC cycle. In addition to ordinary "integer" steps, coinciding here with the synchronous rigid advancement of the whole colloid monolayer, our main prediction is the existence of additional smaller "subharmonic" steps due to localized solitonic regions of incommensurate layers executing synchronized slips, while the majority of the colloids remains pinned to a potential minimum. The current availability and wide parameter tunability of colloid monolayers makes these predictions potentially easy to access in an experimentally rich 2D geometrical configuration.
<p>At the beginning of 2021 a mixed precision version of the NEMO code was included into the official NEMO repository. The implementation followed the approach presented in Tint&#243; et al. 2019. The proposed optimization despite being not at all trivial, is not new, and quite popular nowadays. In fact, for historical reasons many computational models over-engineer the numerical precision, which leads to an under-optimal exploitation of computational infrastructures. By solving this miss-adjustment a conspicuous payback in terms of efficiency and throughput can be gained: we are not only taking a step toward a more environmentally friendly science, sometimes we are actually pushing the horizon of experiment feasibility a little further. For being able to smoothly include the changes needed in the official release an automatic workflow has been implemented: we attempt to minimize the number of changes required and, at the same time, maximize the number of variables that can be computed using single precision. Here we present a general sketch of the tool and workflow used.<br>Starting from the original code, we automatically produce a new version of the same, where the user can specify the precision of each real variable therein declared. With this new executable, a numerical precision analysis can be performed: a search algorithm specially designed for this task will drive a workflow manager toward the creation of a list of variables that is safe to switch to single precision. The algorithm compares the result of each intermediate step of the workflow with reliable results from a double precision version of the same code, detecting which variables need to retain a higher accuracy.<br>The result of this analysis is eventually used to perform the modification needed into the code in order to produce the desired working mixed precision version, while also keeping the number of necessary changes low. Finally, the previous double precision and the new mixed precision versions will be compared, including a computational comparison and a scientific validation to prove that the new version can be used for operational configurations, without losing accuracy and increasing the computational performance dramatically.</p>
<p>Blender is an open-source 3D creation suite with a wide range of applications and users. Even though it is not a tool specifically designed for scientific visualization, it proved to be a very valuable tool to produce stunning visual results. We will show how in our workflow we go from model&#8217;s output written in netCDF to a finished visual product just relying on open-source software. The kind of visualization formats that can be produced ranges from static images to 2D/3D/360/Virtual Reality videos, enabling a wide span of potential outcomes. This kind of products are highly suitable for dissemination and scientific outreach.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.