We report electron and hole drift mobilities in thin film polycrystalline CdTe solar cells based on photocarrier time-of-flight measurements. For a deposition process similar to that used for high-efficiency cells, the electron drift mobilities are in the range of 10−1–100 cm2/V s, and holes are in the range of 100–101 cm2/V s. The electron drift mobilities are about a thousand times smaller than those measured in single crystal CdTe with time-of-flight; the hole mobilities are about ten times smaller. Cells were examined before and after a vapor phase treatment with CdCl2; treatment had little effect on the hole drift mobility, but decreased the electron mobility. We are able to exclude bandtail trapping and dispersion as a mechanism for the small drift mobilities in thin film CdTe, but the actual mechanism reducing the mobilities from the single crystal values is not known.
We report photocarrier time-of-flight measurements of electron drift mobilities for the p-type CuIn1−xGaxSe2 films incorporated in solar cells. The electron mobilities range from 0.02 to 0.05 cm2/Vs and are weakly temperature-dependent from 100–300 K. These values are lower than the range of electron Hall mobilities (2-1100 cm2/Vs) reported for n-type polycrystalline thin films and single crystals. We propose that the electron drift mobilities are properties of disorder-induced mobility edges and discuss how this disorder could increase cell efficiencies.
The properties of a material often depend on the degree of order of their atomic, molecular, or crystalline domain components. This is expected to be especially true for the case of polyacetylene, whose properties are highly anisotropic. For many applications, it may be necessary to have macroscopic order but not necessarily crystalline order. Having polyacetyelene chains fully extended and aligned parallel to each other may be sufficient for these applications even without order of the chains around their long axis. We report here progress in the use of an inclusion crystal containing a photo-reactive precursor to prepare high molecular weight polyacetylene. Raman spectroscopy was performed to probe the resulting conjugated polyene chains. Ultraviolet irradiation of a 1,4-diiodo-1,3-butadiene/urea inclusion complex results in the appearance of new resonance-enhanced Raman modes at 1125 and 1509 cm-1. The Raman spectra of the resulting confined polyene chains are very similar to freestanding isolated trans-polyacetylene prepared by solution methods.
We report a novel, highly effective strategy for controlling the synthesis of polyacetylene as a guest in an organic host crystal by monitoring in situ an elimination−condensation polymerization reaction. Specifically, in this process, the polymer material is forced to have its chains extended and aligned such that translational periodicity applies, producing a bond alternation potential that has a symmetric double minimum. The synthetic approach used is photochemical elimination of iodine from a conjugated diene, (E,E)-1,4-diiodo-1,3-butadiene, which forms a commensurate and fully ordered urea inclusion compound. Photochemical cleavage of the terminal C−I bonds results in elimination of iodine from the single crystal and formation of C−C bonds between adjacent radicals to produce the conjugated 1,8-diiodo-1,3,5,7-octatetraene and subsequent longer polyene species. The combination of in situ crystal mass-loss measurements and vibrational Raman spectroscopy demonstrates clearly the presence of new polyene chains and loss of iodine from the urea substructure. The first few product oligopolyenes exhibit very strong Raman scattering with the most intense vibrational features decreasing in frequency for longer chains approaching an asymptotic limiting frequency that mimics the behavior of conjugated polyenes of known lengths from previous vibrational Raman studies. With extensive irradiation, the mass loss approaches that anticipated from the crystal stoichiometry and, at the same time of irradiation, the Raman intensity largely disappears. These results demonstrate that the reaction reported here proceeds to completion, leading to a quasi-one-dimensional array of isolated polyacetylene chains that are constrained to be in a continuous extended, all-trans conformation within the tunnels formed by the urea crystal lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.