The impact of Ga and Au ion implantation on the electron spin dynamics in bulk wurtzite GaN is studied by time-resolved Kerr-rotation spectroscopy. The spin relaxation time increases strongly by up to a factor of 20 for increasing implantation doses. This drastic increase is caused by a transition from delocalized to localized electrons. We find a characteristic change in the magnetic field dependence of spin relaxation that can be used as a sensitive probe for the degree of localization.
A strong enhancement of Eu3+ luminescence in europium-implanted GaN samples is obtained by codoping with silicon (Si) and magnesium (Mg), simultaneously. The Eu3+ intensity in the 5D0 to 7F2 transition region is found to be 30 times higher compared to europium-implanted undoped GaN. The major contribution to this overall enhancement is due a weak peak present only in europium-implanted Mg-doped GaN at 2.0031 eV (618.9 nm) which is strongly enhanced by codoping both Mg and Si. The excitation process of europium ions is proposed to take place through a donor-acceptor pair related energy transfer mechanism.
We present a study of germanium as an alternative to silicon for n-type doping of cubic GaN. We find that Ge is a well-suited donor impurity. Our layers were grown by plasma-assisted molecular beam epitaxy on 3C-SiC/Si (001) substrates. Germanium-doped layers were fabricated with donor concentrations ranging over several orders of magnitude up to 3.7 × 10 20 cm −3 . For comparison, silicon-doped layers with donor concentrations of up to 3.8 × 10 19 cm −3 were also grown. Incorporation of germanium into the cubic GaN layers was verified by time-of-flight secondary ion mass spectrometry. The crystalline quality of our layers was analyzed using high-resolution x-ray diffraction. Germanium-as well as silicon-doped layers with donor concentrations above 10 19 cm −3 exhibited an increase of the dislocation density with increasing dopant concentration. The surface topography of our layers was investigated by atomic force microscopy. Comparable values for the surface roughness were measured for germanium-as well as silicon-doped layers. Optical properties were investigated by photoluminescence spectroscopy at 13 K. Doping with silicon resulted in a spectrally slightly narrower luminescence than doping with germanium. Donor concentrations and carrier mobilities were determined by Hall effect measurements at room temperature and we observe 20% higher electron mobilities for Ge-doping compared to Si-doping in the case of high dopant concentrations.Published under license by AIP Publishing. https://doi.
Samarium ions of 200 keV in energy were implanted into highly-resistive molecular-beam-epitaxy grown GaN thin films with a focused-ion-beam implanter at room temperature. The implantation doses range from 1 × 1014 to 1 × 1016 cm−2. Structural properties studied by x-ray diffraction and Raman-scattering spectroscopy revealed Sm incorporation into GaN matrix without secondary phase. The optical measurements showed that the band gap and optical constants changed very slightly by the implantation. Photoluminescence measurements showed emission spectra similar to p-type GaN for all samples. Magnetic investigations with a superconducting quantum interference device identified magnetic ordering for Sm dose of and above 1 × 1015 cm−2 before thermal annealing, while ferromagnetism was only observed after thermal annealing from the sample with highest Sm dose. The long-range magnetic ordering can be attributed to interaction of Sm ions through the implantation-induced Ga vacancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.