Arrhythmias, a common cause of sudden cardiac death, can occur in structurally normal hearts, although the mechanism is not known. In cardiac muscle, the ryanodine receptor (RyR2) on the sarcoplasmic reticulum releases the calcium required for muscle contraction. The FK506 binding protein (FKBP12.6) stabilizes RyR2, preventing aberrant activation of the channel during the resting phase of the cardiac cycle. We show that during exercise, RyR2 phosphorylation by cAMP-dependent protein kinase A (PKA) partially dissociates FKBP12.6 from the channel, increasing intracellular Ca(2+) release and cardiac contractility. FKBP12.6(-/-) mice consistently exhibited exercise-induced cardiac ventricular arrhythmias that cause sudden cardiac death. Mutations in RyR2 linked to exercise-induced arrhythmias (in patients with catecholaminergic polymorphic ventricular tachycardia [CPVT]) reduced the affinity of FKBP12.6 for RyR2 and increased single-channel activity under conditions that simulate exercise. These data suggest that "leaky" RyR2 channels can trigger fatal cardiac arrhythmias, providing a possible explanation for CPVT.
Abstract-The cardiac ryanodine receptor (RyR2)/calcium release channel on the sarcoplasmic reticulum is required for muscle excitation-contraction coupling. Using site-directed mutagenesis, we identified the specific Ca 2ϩ /calmodulindependent protein kinase II (CaMKII) phosphorylation site on recombinant RyR2, distinct from the site for protein kinase A (PKA) that mediates the "fight-or-flight" stress response. CaMKII phosphorylation increased RyR2 Ca 2ϩ sensitivity and open probability. CaMKII was activated at increased heart rates, which may contribute to enhanced Ca 2ϩ -induced Ca 2ϩ release. Moreover, rate-dependent CaMKII phosphorylation of RyR2 was defective in heart failure. CaMKII-mediated phosphorylation of RyR2 may contribute to the enhanced contractility observed at higher heart rates. The full text of this article is available online at http://circres.ahajournals.org. (Circ Res. 2004;94:e61-e70.)
Phosphodiesterases (PDEs) regulate the local concentration of 3',5' cyclic adenosine monophosphate (cAMP) within cells. cAMP activates the cAMP-dependent protein kinase (PKA). In patients, PDE inhibitors have been linked to heart failure and cardiac arrhythmias, although the mechanisms are not understood. We show that PDE4D gene inactivation in mice results in a progressive cardiomyopathy, accelerated heart failure after myocardial infarction, and cardiac arrhythmias. The phosphodiesterase 4D3 (PDE4D3) was found in the cardiac ryanodine receptor (RyR2)/calcium-release-channel complex (required for excitation-contraction [EC] coupling in heart muscle). PDE4D3 levels in the RyR2 complex were reduced in failing human hearts, contributing to PKA-hyperphosphorylated, "leaky" RyR2 channels that promote cardiac dysfunction and arrhythmias. Cardiac arrhythmias and dysfunction associated with PDE4 inhibition or deficiency were suppressed in mice harboring RyR2 that cannot be PKA phosphorylated. These data suggest that reduced PDE4D activity causes defective RyR2-channel function associated with heart failure and arrhythmias.
The Ca 2+ release channel ryanodine receptor 2 (RyR2) is required for excitation-contraction coupling in the heart and is also present in the brain. Mutations in RyR2 have been linked to exercise-induced sudden cardiac death (catecholaminergic polymorphic ventricular tachycardia [CPVT]). CPVT-associated RyR2 mutations result in "leaky" RyR2 channels due to the decreased binding of the calstabin2 (FKBP12.6) subunit, which stabilizes the closed state of the channel. We found that mice heterozygous for the R2474S mutation in Ryr2 (Ryr2-R2474S mice) exhibited spontaneous generalized tonic-clonic seizures (which occurred in the absence of cardiac arrhythmias), exercise-induced ventricular arrhythmias, and sudden cardiac death. Treatment with a novel RyR2-specific compound (S107) that enhances the binding of calstabin2 to the mutant Ryr2-R2474S channel inhibited the channel leak and prevented cardiac arrhythmias and raised the seizure threshold. Thus, CPVT-associated mutant leaky Ryr2-R2474S channels in the brain can cause seizures in mice, independent of cardiac arrhythmias. Based on these data, we propose that CPVT is a combined neurocardiac disorder in which leaky RyR2 channels in the brain cause epilepsy, and the same leaky channels in the heart cause exerciseinduced sudden cardiac death. IntroductionPharmacological seizure models have implicated abnormalities in intracellular Ca 2+ cycling of inhibitory interneurons and/or astrocytes as a mechanism of seizure generation (1, 2), and the inositol 1,4,5-trisphosphate receptor (IP3R), an intracellular calcium release channel on the ER, has been associated with seizures in mice (3). However, a causal relationship between defective intracellular calcium release channels and seizures has not been reported. Calcium stored within the ER contributes to neuronal signaling and is controlled by intracellular Ca 2+ release channels, in particular ryanodine receptors (RyRs) (4-6) and IP3Rs (7,8). To explore the underlying mechanism for seizures in CPVT we generated mice that harbor a missense mutation (RyR2-R2474S) that has been linked to exercise-induced cardiac arrhythmias in humans (9-12).More than 50 distinct RYR2 mutations have been linked to catecholaminergic polymorphic ventricular tachycardia (CPVT), an arrhythmogenic cardiomyopathy (13-15). CPVT patients experience syncope and sudden cardiac death (SCD) from the toddler to adult ages, and by 35 years age the mortality is up to 50% (13,16,17).
Ventricular arrhythmias can cause sudden cardiac death (SCD) in patients with normal hearts and in those with underlying disease such as heart failure. In animals with heart failure and in patients with inherited forms of exercise-induced SCD, depletion of the channel-stabilizing protein calstabin2 (FKBP12.6) from the ryanodine receptor-calcium release channel (RyR2) complex causes an intracellular Ca2+ leak that can trigger fatal cardiac arrhythmias. A derivative of 1,4-benzothiazepine (JTV519) increased the affinity of calstabin2 for RyR2, which stabilized the closed state of RyR2 and prevented the Ca2+ leak that triggers arrhythmias. Thus, enhancing the binding of calstabin2 to RyR2 may be a therapeutic strategy for common ventricular arrhythmias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.